Skip to main content
Log in

Multiple Bifurcations in a Discrete Bazykin Predator–Prey Model with Predator Intraspecific Interactions and Ratio-Dependent Functional Response

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

A discrete Bazykin predator–prey model with predator intraspecific interactions and ratio-dependent functional response is proposed and investigated. A brief mathematical analysis of the model involves giving fixed points and analyzing local stability. Codimension-one bifurcations such as the transcritical, fold, flip, Neimark-Sacker bifurcations and codimension-two bifurcations, including the fold-flip bifurcation, 1:2, 1:3, and 1:4 strong resonances, are investigated. Accurate theoretical analysis and exquisite numerical simulation are given simultaneously, which support the main content of this manuscript. With the help of several local attraction basins, period, and Lyapunov exponent diagrams, an intriguing set of fascinating dynamics in the two-parameter spaces of integral step size with other parameters is uncovered. The results in this paper reveal that the dynamics of the discrete-time predator–prey system in both single-parameter and two-parameter spaces are inherently rich and complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availibility

All data generated or analysed during this study are included in this manuscript.

References

  1. Williams, B.K., Nichols, J.D., Conroy, M.J.: Analysis and Management of Animal Populations. Academic Press, San Diego, CA (2002)

    Google Scholar 

  2. Hembry, D.H., Hembry, M.G.: Ecological interactions and macroevolution: a new field with old roots. Annu. Rev. Ecol. Evol. Syst. 51, 215–243 (2020)

    Google Scholar 

  3. Zhao, L.Z., Huang, C.D., Cao, J.D.: Dynamics of fractional-order predator-prey model incorporating two delays. Fractals 29, 2150014 (2021)

    MATH  Google Scholar 

  4. Berryman, A.A.: The origins and evolutions of predator-prey theory. Ecology 73, 1530–1535 (1992)

    Google Scholar 

  5. Ruan, S.G., Xiao, D.M.: Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2001)

    MathSciNet  MATH  Google Scholar 

  6. Zhou, H., Tang, B., Zhu, H.P., Tang, S.Y.: Bifurcation and dynamic analyses of non-monotonic predator-prey system with constant releasing rate of predators. Qual. Theory Dyn. Syst. 21, 10 (2022)

    MathSciNet  MATH  Google Scholar 

  7. Xiao, D.M., Ruan, S.G.: Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. J. Differ. Equ. 176, 494–510 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Hu, D.P., Li, Y.Y., Liu, M., Bai, Y.Z.: Stability and Hopf bifurcation for a delayed predator-prey model with stage structure for prey and Ivlev-type functional response. Nonlinear Dyn. 99, 3323–3350 (2020)

    MATH  Google Scholar 

  9. Mondal, N., Barman, D., Alam, S.: Impact of adult predator incited fear in a stage-structured prey-predator model. Environ. Dev. Sustain. 23, 9280–9307 (2021)

    Google Scholar 

  10. Li, S.M., Wang, X.L., Li, X.L., Wu, K.L.: Relaxation oscillations for Leslie-type predator-prey model with Holling type I response functional function. Appl. Math. Lett. 120, 107328 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Lu, M., Huang, J.C.: Global analysis in Bazykin’s model with Holling II functional response and predator competition. J. Differ. Equ. 280, 99–138 (2021)

    MathSciNet  MATH  Google Scholar 

  12. Arias, C.F., Blé, G., Falconi, M.: Dynamics of a discrete-time predator-prey system with Holling II functional response. Qual. Theory Dyn. Syst. 21, 31 (2022)

    MathSciNet  MATH  Google Scholar 

  13. Vishwakarma, K., Sen, M.: Influence of Allee effect in prey and hunting cooperation in predator with Holling type-III functional response. J. Appl. Math. Comput. 68, 249–269 (2022)

    MathSciNet  MATH  Google Scholar 

  14. Huang, J.C., Ruan, S.G., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257, 1721–1752 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Zhang, J., Su, J.: Bifurcations in a predator-prey model of Leslie-type with simplified Holling type IV functional response. Int. J. Bifurcat. Chaos 31, 2150054 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Zhuo, X.L., Zhang, F.X.: Stability for a new discrete ratio-dependent predator-prey system. Qual. Theory Dyn. Syst. 17, 189–202 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Dai, B.X., Zou, J.Z.: Periodic solutions of a discrete-time nonautonomous predator-prey system with the Beddington-DeAngelis functional response. J. Appl. Math. Comput. 24, 127–139 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Li, X.Y., Wang, Q., Han, R.J.: An impulsive predator-prey system with modified Leslie-Gower functional response and diffusion. Qual. Theory Dyn. Syst. 20, 78 (2021)

    MathSciNet  MATH  Google Scholar 

  19. Gao, X.Y., Ishag, S.D., Fu, S.M., Li, W.J., Wang, W.M.: Bifurcation and Turing pattern formation in a diffusive ratio-dependent predator-prey model with predator harvesting. Nonlinear Anal-RWA 51, 102962 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Shang, Z.C., Qiao, Y.H.: Multiple bifurcations in a predator-prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting. Math. Comput. Simulat. 205, 745–764 (2023)

    MathSciNet  MATH  Google Scholar 

  21. Li, Y.J., He, M.X., Li, Z.: Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect. Math. Comput. Simulat. 201, 417–439 (2022)

    MathSciNet  MATH  Google Scholar 

  22. Gutierrez, A.P.: The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson’s blowflies as an example. Ecology 73, 1552–1563 (1992)

    Google Scholar 

  23. Cosner, C., Angelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators. Theor. Popul. Biol. 56, 65–75 (1999)

    MATH  Google Scholar 

  24. Arditi, R., Ginzburg, L.R., Akcakaya, H.R.: Variation in plankton densities among lakes: a case for ratio dependent predation models. Am. Nat. 138, 1287–1296 (1991)

    Google Scholar 

  25. Hanski, I.: The functional response of predator: worries about scale. Tree 6, 141–142 (1991)

    Google Scholar 

  26. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Haque, M.: Ratio-dependent predator-prey models of interacting populations. B. Math. Biol. 71, 430–452 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Banerjee, M., Abbas, S.: Existence and non-existence of spatial patterns in a ratio-dependent predator-prey model. Ecol. Complex. 21, 199–214 (2015)

    Google Scholar 

  29. Arancibia-Ibarra, C., Aguirre, P., Flores, J., van Heijster, P.: Bifurcation analysis of a predator-prey model with predator intraspecific interactions and ratio-dependent functional response. Appl. Math. Comput. 402, 126152 (2021)

    MathSciNet  MATH  Google Scholar 

  30. Zhang, X.B., An, Q., Wang, L.: Spatiotemporal dynamics of a delayed diffusive ratio-dependent predator-prey model with fear effect. Nonlinear Dyn. 105, 3775–3790 (2021)

    Google Scholar 

  31. Jiang, X., She, Z.K., Ruan, S.G.: Global dynamics of a predator-prey system with density-dependent mortality and ratio-dependent functional response. Discrete Cont. Dyn. B 26, 1967–1990 (2021)

    MathSciNet  MATH  Google Scholar 

  32. Alekseev, V.V.: Effect of saturation factor on the dynamics of predator-prey system. Biofizika 18, 922–926 (1973)

    Google Scholar 

  33. Bazykin, A.D.: Volterra system and Michaelis-Menten equation. In Voprosy Matematicheskoi Genetiki, Novosibirsk, pp. 103–143 (1974)

  34. Bazykin, A.D.: Structural and dynamical stability of model predator-prey systems. In: Int. Inst. Appl. Syst. Anal., Laxenburg, Austria (1976)

  35. Bazykin, A.D., Berezovskaya, F.S., Buriev, T.I.: Dynamics of predator-prey system including predator saturation and competition. In: Faktory Raznoobraziya v Matematicheskoi Ekologii i Populyatsionnoi Genetike, Pushchino, pp. 6–33 (1980)

  36. Li, X.Y., Liu, Y.Q.: Transcritical bifurcation and flip bifurcation of a new discrete ratio-dependent predator-prey system. Qual. Theory Dyn. Syst. 21, 122 (2022)

    MathSciNet  MATH  Google Scholar 

  37. Singh, A., Deolia, P.: Dynamical analysis and chaos control in discrete-time prey-predator model. Commun. Nonlinear Sci. Numer. Simulat. 90, 105313 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Naik, P.A., Eskandari, Z., Yavuz, M., Zu, J.: Complex dynamics of a discrete-time Bazykin-Berezovskaya prey-predator model with a strong Allee effect. J. Comput. Appl. Math. 413, 114401 (2022)

    MathSciNet  MATH  Google Scholar 

  39. Cheng, L.F., Cao, H.J.: Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect. Commun. Nonlinear Sci. Numer. Simulat. 38, 288–302 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Yu, Y., Cao, H.J.: Integral step size makes a difference to bifurcations of a discrete-time Hindmarsh-Rose model. Int. J. Bifurcat. Chaos 25, 1550029 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Hu, D.P., Cao, H.J.: Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type. Commun. Nonlinear Sci. Numer. Simulat. 22, 702–715 (2015)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, L.M., Xu, Y.K., Liao, G.Y.: Codimension-two bifurcations and bifurcation controls in a discrete biological system with weak Allee effect. Int. J. Bifurcat. Chaos 32, 2250036 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Liu, X.J., Liu, Y.: Codimension-two bifurcation analysis on a discrete Gierer-Meinhardt system. Int. J. Bifurcat. Chaos 30, 2050251 (2020)

    MathSciNet  MATH  Google Scholar 

  44. Strogatz, S.H.: Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Florida (2018)

    Google Scholar 

  45. Hastings, A., Hom, C.L., Ellner, S., Turchin, P., Godfray, H.C.J.: Chaos in ecology: Is mother nature a strange attractor? Annu. Rev. Ecol. Syst. 24, 1–33 (1993)

    Google Scholar 

  46. Maquet, J., Letellier, C., Aguirre, L.A.: Global models from the Canadian lynx cycles as a direct evidence for chaos in real ecosystems. J. Math. Biol. 55, 21–39 (2007)

    MathSciNet  MATH  Google Scholar 

  47. Hossain, M., Garai, S., Jafari, S., Pal, N.: Bifurcation, chaos, multistability, and organized structures in a predator-prey model with vigilance. Chaos 32, 063139 (2022)

    MathSciNet  Google Scholar 

  48. Chen, Q.L., Teng, Z.D., Wang, F.: Fold-flip and strong resonance bifurcations of a discrete-time mosquito model. Chaos Soliton. Fract. 144, 110704 (2021)

    MathSciNet  Google Scholar 

  49. Abdelaziz, M.A.M., Ismail, A.I., Abdullah, F.A., Mohd, M.H.: Codimension one and two bifurcations of a discrete-time fractional-order SEIR measles epidemic model with constant vaccination. Chaos Soliton. Fract. 140, 110104 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Naik, P.A., Eskandari, Z., Shahraki, H.E.: Flip and generalized flip bifurcations of a two-dimensional discrete-time chemical model. Math. Model. Numer. Simu. Appl. 1, 95–101 (2021)

    Google Scholar 

  51. Naik, P.A., Eskandari, Z., Avazzadeh, Z., Zu, J.: Multiple bifurcations of a discrete-time prey-predator model with mixed functional response. Int. J. Bifurcat. Chaos 32, 2250050 (2022)

    MathSciNet  MATH  Google Scholar 

  52. Barman, D., Roy, J., Alam, S.: Trade-off between fear level induced by predator and infection rate among prey species. J. Appl. Math. Comput. 64, 635–663 (2020)

    MathSciNet  MATH  Google Scholar 

  53. Barman, D., Kumar, V., Roy, J., Alam, S.: Modeling wind effect and herd behavior in a predator-prey system with spatiotemporal dynamics. Eur. Phys. J. Plus 137, 950 (2022)

    Google Scholar 

  54. Barman, D., Roy, J., Alam, S.: Impact of wind in the dynamics of prey-predator interactions. Math. Comput. Simulat. 191, 49–81 (2022)

    MathSciNet  MATH  Google Scholar 

  55. Wang, X.H., Wang, Z., Lu, J.W., Meng, B.: Stability, bifurcation and chaos of a discrete-time pair approximation epidemic model on adaptive networks. Math. Comput. Simulat. 182, 182–194 (2021)

    MathSciNet  MATH  Google Scholar 

  56. Kuznetsov, Yu.A.: Elements of Applied Bifurcation Theory. Applied Mathematical Sciences, vol. 112, 3rd edn. Springer, New York (2004)

    MATH  Google Scholar 

  57. Govaerts, W., Kuznetsov, Y.A., Khoshsiar Ghaziani, R., Meijer, H.G.E.: Cl Matcontm: A Toolbox for Continuation and Bifurcation of Cycles of Maps. Universiteit Gent, Belgium, and Utrecht University, The Netherlands (2008)

  58. Kuznetsov, Yu.A., Meijer, H.G.E.: Numerical Bifurcation Analysis of Maps: From Theory to Software. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  59. Bao, B.C., Chen, C.J., Bao, H., Zhang, X., Xu, Q., Chen, M.: Dynamical effects of neuron activation gradient on Hopfield neural network: numerical analyses and hardware experiments. Int. J. Bifur. Chaos 29, 1930010 (2019)

    MathSciNet  MATH  Google Scholar 

  60. Rao, X.B., Chu, Y.D., Chang, Y.X., Zhang, J.G., Tian, Y.P.: Dynamics of a cracked rotor system with oil-film force in parameter space. Nonlinear Dyn. 88, 2347–2357 (2017)

    Google Scholar 

  61. Wang, F.J., Cao, H.J.: Model locking and quaiperiodicity in a discrete-time Chialvo neuron model. Commun. Nonlinear Sci. Numer. Simul. 56, 481–489 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Liu, M., Meng, F.W., Hu, D.P.: Codimension-one and codimension-two bifurcations in a new discrete chaotic map based on gene regulatory network model. Nonlinear Dyn. 110, 1831–1865 (2022)

    Google Scholar 

  63. Yu, X., Liu, M., Zheng, Z.W., Hu, D.P.: Complex dynamics of a discrete-time SIR model with nonlinear incidence and recovery rates. Int. J. Biomath. (2022). https://doi.org/10.1142/S1793524522501315

    Article  Google Scholar 

  64. Blyuss, K.B., Kyrychko, S.N., Kyrychko, Y.N.: Time-delayed and stochastic effects in a predator-prey model with ratio dependence and Holling type III functional response. Chaos 31, 073141 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF of Shandong Province(ZR2021MA016, ZR2019MA034), National Natural Science Foundation of China(62003189), China Postdoctoral Science Foundation (2020M672024, 2019M652349) and the Youth Creative Team Sci-Tech Program of Shandong Universities(2019KJI007).

Author information

Authors and Affiliations

Authors

Contributions

DH and ML wrote the main manuscript text. XY, CZ and ZZ prepared all the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ming Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 264 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Yu, X., Zheng, Z. et al. Multiple Bifurcations in a Discrete Bazykin Predator–Prey Model with Predator Intraspecific Interactions and Ratio-Dependent Functional Response. Qual. Theory Dyn. Syst. 22, 99 (2023). https://doi.org/10.1007/s12346-023-00780-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00780-5

Keywords

Navigation