Skip to main content
Log in

Analysis of Neutral Fractional Differential Equation via the Method of Upper and Lower Solution

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This manuscript is concerned about the study of the existence of solutions for the class of nonlinear neutral Caputo-Hadamard fractional differential equations including integral terms. In order to establish the necessary conditions of solvability for the proposed problem, we apply the semi-group property of Hadamard fractional integral operator. Also, under the appropriate conditions, we demonstrate that the solution set for the proposed problem is non-empty by using Arzelá-Ascoli theorem and the method of upper and lower solutions. In contrast to the fundamental results graphical example is also presented in order to validate the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Das, S., Pan, I.: Fractional order signal processing: introductory concepts and applications. Springer Science & Business Media (2011)

    MATH  Google Scholar 

  2. Goto, M., Ishii, D.: Semidifferential electroanalysis. J. electroanal. chem. 61, 361–365 (1975)

    Google Scholar 

  3. Freed, A., Diethelm, K., Luchko, Y.: Fractional-Order Viscoelasticity (fov): Constitutive Development using The Fractional Calculus: First Annual Report. Materials Science, (2002)

  4. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional calculus: Models and numerical methods Series on Complexity, non-linearity and Chaos. World Scientific Publishing, USA (2012)

    MATH  Google Scholar 

  5. Mainardi, F.: Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical models. Imperial College Press, London (2010)

    MATH  Google Scholar 

  6. Dhawan, K., Vats, R.K., Agarwal, R.P.: Qualitative analysis of couple fractional differential equations involving Hilfer Derivative. An. St. Univ. Ovidius Constanta. 30(1), 191–217 (2022)

    MATH  Google Scholar 

  7. Wu, G.C., Baleanu, D., Zeng, S.D.: Discrete chaos in fractional sine and standard maps. Phys. Lett. A 378, 484–87 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Magin, R.L.: Fractional calculus in bioengineering. Begell House, Redding (2006)

    Google Scholar 

  9. Anastasio, T.J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biol. Cybern. 72, 69–79 (1994)

    Google Scholar 

  10. Gaul, L., Klein, P., Kemple, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5(2), 81–88 (1991)

    Google Scholar 

  11. Dadras, S., Momeni, H.R.: Control of a fractional-order economical system via sliding mode. Phys. A: Stat. Mech. Appl. 389, 2434–2442 (2010)

    Google Scholar 

  12. Caponetto, R.: Fractional Order Systems: Modeling and Control Applications. World Scientific, Singapore (2010)

    Google Scholar 

  13. Marazzato, R., Sparavigna, AC.: Astronomical image processing based on fractional calculus: the astrofractool. (2009) arXiv preprint arXiv:0910.4637

  14. Robinson, D.: The use of control systems analysis in the neurophysiology of eye movements. Annu. Rev. Neurosci. 4, 463–503 (1981)

    Google Scholar 

  15. Babusci, D., Dattoli, G., Sacchetti, D.: The Lamb-Bateman integral equation and the fractional derivatives. Fract. Calc. Appl. 14(2), 31–320 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Liang, Y., Wang, S., Chen, W., Zhou, Z., Magin, R.L.: A survey of models of ultraslow diffusion in heterogeneous materials. Appl. Mech. Rev. 71(040802), 1–16 (2019)

    Google Scholar 

  17. Zhang, X., Xu, P., Wu, Y., Wiwatanapataphee, B.: The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model. Nonlinear Anal. Model. Control. 27(3), 428–44 (2022)

    MathSciNet  MATH  Google Scholar 

  18. Nain, A.K., Vats, R.K., Kumar, A.: Coupled fractional differential equations involving Caputo-Hadamard derivative with nonlocal boundary conditions. Math. Methods Appl. Sci. 44(5), 4192–4204 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Zhang, X., Yu, L., Jiang, J., Wu, Y., Cui, Y.: Solutions for a singular Hadamard-type fractional differential equation by the spectral construct analysis. J. Funct. Spaces. 2020, 1–12 (2020)

    MathSciNet  MATH  Google Scholar 

  20. Vijayakumar, V., Ravichandran, C., Murugesu, R.: Existence of mild solutions for nonlocal Cauchy problem for fractional neutral evolution equations with infinite delay. Surv. Math. its Appl. 9(1), 117–129 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Kilbas, A.A.: Hadamard-type fractional calculus. J. Korean Math. Soci. 38(6), 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Pooseh, S., Almeida, R., Torres, D.F.M.: Expansion formulas in terms of integer-order derivatives for the Hadamard fractional integral and derivative. Numer. Funct. Anal. Optimiz. 33(3), 301–319 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Jarad, F., Abdeljawad, T., Baleanu, D.: Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012(1), 1–8 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014(1), 1–2 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional stochastic control system. Asian-Eur. J. Math. 11(06), 1850088 (2018)

    MathSciNet  MATH  Google Scholar 

  26. Shukla, A., Sukavanam, N., Pandey, D.N., Arora, U.: Approximate controllability of second-order semilinear control system. Circ. Syst. Signal Process. 35, 3339–3354 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Shukla, A., Sukavanam, N., Pandey, DN.: Approximate controllability of semilinear fractional control systems of order \(\alpha \in (1, 2]\). in 2015 Proceedings of the Conference on Control and its Applications Society for Industrial and Applied Mathematics, pp. 175-180

  28. Shukla, A., Sukavanam, N., Pandey, D.N.: Controllability of semilinear stochastic system with multiple delays in control. IFAC Proceed. Vol. 47(1), 306–312 (2014)

    Google Scholar 

  29. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control. Math. Rep 18(2), 247–259 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Almeida, R.: Caputo-Hadamard fractional derivatives of variable order. Numer. Funct. Anal. Optim. 38(1), 1–9 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Gohar, M., Li, C., Yin, C.: On Caputo-Hadamard fractional differential equations. Int. J. Comput. Math. 97(7), 1459–83 (2020)

    MathSciNet  MATH  Google Scholar 

  32. Talib, I., Bohner, M.: Numerical study of generalized modified Caputo fractional differential equations. Int. J. Comput. Math. 100(1), 153–76 (2023)

    MathSciNet  Google Scholar 

  33. Asif, N.A., Talib, I.: Existence of solutions to second order nonlinear coupled system with nonlinear coupled boundary conditions. Electron. J. Differ. Equ 2015(313), 1–11 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Bellen, A., Guglielmi, N., Ruehli, A.E.: Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circ. Syst. I: Fund. Theory Appl. 46(1), 212–215 (1999)

    MathSciNet  MATH  Google Scholar 

  35. Dubey, R.S.: Approximations of solutions to abstract neutral functional differential equation. Numer. Funct. Anal. Optim. 32(3), 286–308 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Xiang, Z., Liu, S., Mahmoud, M.S.: Robust \(H_\infty \) reliable control for uncertain switched neutral systems with distributed delays. IMA J. Math. Control Inf. 32(1), 1–19 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Liu, S., Wang, G., Zhang, L.: Existence results for a coupled system of nonlinear neutral fractional differential equations. Appl. Math. Lett. 26(12), 1120–4 (2013)

    MathSciNet  MATH  Google Scholar 

  38. Zhou, X.F., Yang, F., Jiang, W.: Analytic study on linear neutral fractional differential equations. Appl. Math. Comput. 257, 295–307 (2015)

    MathSciNet  MATH  Google Scholar 

  39. Jeet, K., Bahuguna, D.: Approximate controllability of nonlocal neutral fractional integro-differential equations with finite delay. J. Dyn. Control Syst. 22(3), 485–504 (2016)

    MathSciNet  MATH  Google Scholar 

  40. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 44(2), 1438–1455 (2021)

    MathSciNet  MATH  Google Scholar 

  41. Vijayakumar, V., Aldosary, S.F., Nisar, K.S., Alsaadi, A.: Exact controllability results for Sobolev-type Hilfer fractional neutral delay Volterra-Fredholm integro-differential systems. Fractal Fract. 6(81), 1–21 (2022)

    Google Scholar 

  42. Chaudhary, R., Pandey, D.N.: Monotone iterative technique for neutral fractional differential equation with infinite delay. Math. Methods Appl. Sci. 39(15), 4642–4653 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Batool, A., Talib, I., Bourguiba, R., Suwan, I., Abdeljawad, T., Riaz, M.B.: A new generalized approach to study the existence of solutions of nonlinear fractional boundary value problems. Int. J. Nonlinear Sci. Numer. Simul. (2022). https://doi.org/10.1515/ijnsns-2021-0338

    Article  Google Scholar 

  44. Lakshmikantham, V., Vatsala, A.S.: General uniqueness and monotone iterative technique for fractional differential equations. Appl. Math. Lett. 21(8), 828–34 (2008)

    MathSciNet  MATH  Google Scholar 

  45. Darzi, R., Mohammadzadeh, B., Neamaty, A., Baleanu, D.: Lower and upper solutions method for positive solutions of fractional boundary value problems. Abstr. Appl. Anal. 2013, 1–8 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Liu, X., Jia, M.: The method of lower and upper solutions for the general boundary value problems of fractional differential equations with p-Laplacian. Adv. Differ. Equ. 2018(1), 1–5 (2018)

    MathSciNet  Google Scholar 

  47. Zhang, X., Kong, D., Tian, H., Wu, Y., Wiwatanapataphee, B.: An upper-lower solution method for the eigenvalue problem of Hadamard-type singular fractional differential equation. Nonlinear Anal.: Model. Control. 27, 1–4 (2022)

    MathSciNet  MATH  Google Scholar 

  48. Bouazza, Z., Souhila, S., Etemad, S., Souid, M.S., Akgul, A., Rezapour, S., De la Sen, M.: On the Caputo-Hadamard fractional IVP with variable order using the upper-lower solutions technique. AIMS Math. 8(3), 5484–5501 (2023)

    MathSciNet  Google Scholar 

  49. Batool, A., Talib, I., Riaz, M.B., Tunç, C.: Extension of lower and upper solutions approach for generalized nonlinear fractional boundary value problems. Arab J. Basic Appl. Sci. 29(1), 249–256 (2022)

    Google Scholar 

  50. Talib, I., Asif, N.A., Tunc, C.: Coupled lower and upper solution approach for the existence of solutions of nonlinear coupled system with nonlinear coupled boundary conditions. Proyecciones (Antofagasta). 35(1), 99–117 (2016)

    MathSciNet  MATH  Google Scholar 

  51. Bai, Y., Kong, H.: Existence of solutions for non-linear Caputo-Hadamard fractional differential equations via the method of upper and lower solutions. J. Non-linear Sci. Appl. 10, 5744–5752 (2017)

    MATH  Google Scholar 

  52. Gambo, Y.Y., Jarad, F., Baleanu, D., Abdeljawad, T.: On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 1–12 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier Science, Amsterdam (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Vijayakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhawan, K., Vats, R.K. & Vijayakumar, V. Analysis of Neutral Fractional Differential Equation via the Method of Upper and Lower Solution. Qual. Theory Dyn. Syst. 22, 93 (2023). https://doi.org/10.1007/s12346-023-00795-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00795-y

Keywords

Mathematics Subject Classification

Navigation