Skip to main content
Log in

Fibonacci Wavelet Collocation Method for Fredholm Integral Equations of Second Kind

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The goal of this research is to provide an effective technique for finding approximate solutions to the Fredholm integral problems of second kind using the Fibonacci Wavelet. To approximate the problem, Fibonacci wavelet collocation technique is employed. The Fredholm integral equations are transformed into algebraic equations having unknown Fibonacci coefficients. The convergence analysis and error estimation of the Fibonacci wavelet is briefly discussed. The results obtained by the current methodology are shown with the help of tables and graphs. To demonstrate the novelty of the current technique the outcomes are compared with Hermite cubic spline. Additionally, the comparison of exact and approximate values shows the precision, adaptability, and resilience of the suggested numerical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hethcote, H.W., Tudor, D.W.: Integral equation models for endemic infectious diseases. J Math. Biol. 9, 37–47 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ting, S.C., Hohmann, G.W.: Integral equation modeling of three-dimensional magnetotelluric response. Geophysics 46(2), 182–197 (1981)

    Article  Google Scholar 

  3. Pettitt, B.M., Rossky, P.J.: Integral equation predictions of liquid state structure for waterlike intermolecular potentials. J. Chem. Phys. 77(3), 1451–1457 (1982)

    Article  Google Scholar 

  4. Miller, E.K.: An overview of time-domain integral-equation models in electromagnetics. J. Electromagn. Waves Appl. 1(3), 269–293 (1987)

    Article  Google Scholar 

  5. Babaaghaie, A., Maleknejad, K.: Numerical solutions of nonlinear two-dimensional partial Volterra integro-differential equations by Haar wavelet. J. Comput. Appl. Math. 317, 643–651 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Tavassoli Kajani, M., Ghasemi, M., Babolian, E.: Numerical solution of linear integro-differential equation by using sine–cosine wavelets. Appl. Math. Comput. 180(2), 569–574 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Bahmanpour, M., Fariborzi Araghi, M.A.: Numerical solution of Fredholm and Volterra integral equations of the first kind using wavelets bases. J. Math. Comput. Sci. 5(4), 337–345 (2012)

    Article  Google Scholar 

  8. Bahmanpour, M., Fariborzi Araghi, M.A.: A method for solving Fredholm integral equation of the first kind based on Chebyshev wavelets. Anal. Theory Appl. 29(3), 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tavassoli Kajani, M., Ghasemi, M., Babolian, E.: Comparison between the homotopy perturbation method and the sine–cosine wavelet method for solving linear integro-differential equations. Comput. Math. Appl. 54(7), 1162–1168 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, Y.M., Wei, Y.Q., Liub, D.Y., Yua, H.: Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets. Appl. Math. Lett. 46, 83–88 (2015)

    Article  MathSciNet  Google Scholar 

  11. Tavassoli Kajani, M., Hadi Vencheh, A.: Solving linear integro-differential equation with Legendre wavelets. Int. J. Comput. Math. 81(6), 719–726 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Friborzi Araghi, M.A., Bahmanpour, M.: Numerical solution of Fredholm integral equation of the first kind using Legendre, Chebyshev and CAS wavelets. Int. J. Math. Sci. Eng. Appl. 2(4), 1–9 (2008)

    MATH  Google Scholar 

  13. Ghasemi, M., Tavassoli Kajani, M.: Numerical solution of time-varying delay systems by Chebyshev wavelets. Appl. Math. Model. 35(11), 5235–5244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Karimi, M., Rezaee, A.: Regularization of the Cauchy problem for the Helmholtz equation by using Meyer wavelet. J. Comput. Appl. Math. 320, 76–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pandit, S., Jiwari, R., Bedi, K., Koksal, M.E.: Haar wavelets operational matrix based algorithm for computational modelling of hyperbolic type wave equations. Eng. Comput. 34(8), 2793–2814 (2017)

    Article  Google Scholar 

  16. Jiwari, R.: A Haar wavelet quasilinearization approach for numerical simulation of Burgers’ equation. Comput. Phys. Commun. 183(11), 2413–2423 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pandit, S.: Local radial basis functions and scale-3 Haar wavelets operational matrices based numerical algorithms for generalized regularized long wave model. Wave Motion 109, 102846 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Pandit, S., Mittal, R.C.: A numerical algorithm based on scale-3 Haar wavelets for fractional advection dispersion equation. Eng. Comput. 38(4), 1706–1724 (2021)

    Article  Google Scholar 

  19. Rostami, Y.: A new wavelet method for solving a class of nonlinear partial integro-differential equations with weakly singular kernels. Math. Sci. 16(3), 225–235 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rostami, Y.: An effective computational approach based on Hermite wavelet Galerkin for solving parabolic Volterra partial integro differential equations and its convergence analysis. Math. Model. Anal. 28(1), 163–179 (2023)

    Article  MathSciNet  Google Scholar 

  21. Rostami, Y.: Two approximated techniques for solving of system of two-dimensional partial integral differential equations with weakly singular kernels. Comput. Appl. Math. 40(6), 217 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liang, X., Liu, M., Che, X.: Solving second kind integral equations by Galerkin methods with continuous orthogonal wavelets. J. Comput. Appl. Math. 136, 149–161 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maleknejad, K., Mahmoudi, Y.: Numerical solution of linear Fredholm integral equation by using hybrid Taylor and block-pulse functions. Appl. Math. Comput. 149, 799–806 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Babolian, E., Marzban, H.R., Salmani, M.: Using triangular orthogonal functions for solving Fredholm integral equations of the second kind. Appl. Math. Comput. 201, 452–464 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Maleknejad, K., Tavassoli Kajani, M., Mahmoudi, Y.: Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets. Kybernetes 32(9/10), 1530–1539 (2003)

    Article  MATH  Google Scholar 

  26. Maleknejad, K., Yousefi, M.: Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines. Appl. Math. Comput. 183(1), 134–141 (2006)

    MathSciNet  MATH  Google Scholar 

  27. Lepik, Ü., Tamme, E.: Application of the Haar wavelets for solution of linear integral equations. In: Antalya, Turkey—Dynamical Systems and Applications, Proceedings, pp. 395–407 (2005)

  28. Yousefi, S., Banifatemi, A.: Numerical solution of Fredholm integral equations by using CAS wavelets. Appl. Math. Comput. 183, 458–463 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Maleknejad, K., Mirzaee, F.: Using rationalized Haar wavelet for solving linear integral equations. Appl. Math. Comput. 160, 579–587 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Maleknejad, K., Lotfi, T., Rostami, Y.: Numerical computational method in solving Fredholm integral equations of the second kind by using Coifman wavelet. Appl. Math. Comput. 186, 212–218 (2007)

    MathSciNet  MATH  Google Scholar 

  31. Muthuvalu, M.S., Sulaiman, J.: Half-Sweep Arithmetic Mean method with composite trapezoidal scheme for solving linear Fredholm integral equations. Appl. Math. Comput. 217, 5442–5448 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Keshavarz, E., Ordokhani, Y., Razzaghi, M.: Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. App. Math. Model. 38, 6038–6051 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rostami, Y., Maleknejad, K.: The solution of the nonlinear mixed partial integro-differential equation via two-dimensional hybrid functions. Mediterr. J Math. 19(2), 89 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rostami, Y., Maleknejad, K.: Comparison of two hybrid functions for numerical solution of nonlinear mixed partial integro-differential equations. Iran. J. Sci. Technol. Trans. A Sci. 46(2), 645–658 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rostami, Y.: An effective computational approach based on Hermite wavelet Galerkin for solving parabolic Volterra partial integro differential equations and its convergence analysis. Math. Model. Anal. 28(1), 163–179 (2023)

    Article  MathSciNet  Google Scholar 

  36. Sabermahani, Sedigheh: Fibonacci wavelets and their applications for solving two classes of time-varying delay problems. Optimal Control Appl. Math. 41, 395–416 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Falcon, S., Plaza, A.: On k-Fibonacci sequences and polynomials and their derivatives. Chaos Solitons Fractals 39, 1005–19 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to manuscript writing editing and conceptualizations. All authors reviewed the manuscript

Corresponding author

Correspondence to Shah Jahan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P., Jahan, S. & Nisar, K.S. Fibonacci Wavelet Collocation Method for Fredholm Integral Equations of Second Kind. Qual. Theory Dyn. Syst. 22, 82 (2023). https://doi.org/10.1007/s12346-023-00785-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00785-0

Keywords

Mathematics Subject Classification

Navigation