Skip to main content
Log in

Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this typescript, we present nonlinear implicit random fractional integro-differential equation in mean square sense and its corresponding coupled system. For the existence, uniqueness and at least one solution of the said nonlinear equation, we use Banach contraction and Schauder fixed point theorems, respectively. Uniqueness and at least one solution of corresponding coupled form of the proposed nonlinear system will be prove through Banach contraction theorem and Arzel\(\grave{\textrm{a}}\)–Ascoli theorem, respectively. Under some hypothesis, we scrutinize Hyers–Ulam stability of the mentioned nonlinear equation and its corresponding coupled nonlinear system. For the support of our main results, we present examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alam, M., Shah, D.: Hyers–Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives. Chaos Solitons Fractals 150, 111122 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alam, M., Zada, A., Riaz, U.: On a coupled impulsive fractional integrodifferential system with Hadamard derivatives. Qual. Theory Dyn. Syst. 21(8), 1–31 (2021)

    MathSciNet  MATH  Google Scholar 

  3. Begum, S., Zada, A., Saifullah, S., Popa, I.L.: Dynamical behaviour of random fractional integro-differential equation via Hilfer fractional derivative. U.P.B. Sci. Bull. Ser. A 84, 137–148 (2022)

    Google Scholar 

  4. Belmora, S., Ravichandran, C., Jarad, F.: Nonlinear generalized fractional differential equations with generalized fractional integral conditions. J. Taibah Univ. Sci. 14(1), 114–123 (2020)

    Article  Google Scholar 

  5. Burgos, C.: Mean square calculus and random linear fractional differential equations, theory and applications. Appl. Math. Nonlinear Sci. 2(2), 317–328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Burgos, C., Cortés, J.C., Villafuerte, L., Villanueva, R.J.: Solving random mean square fractional linear differential equations by generalized power series, analysis and computing. J. Comput. Appl. Math. 339, 94–110 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diethelm, K.: The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics (2010)

  8. Dong, L.S., Noa, H.V., Vu, H.: Existence and Ulam stabiity for random fractional integro-differential equation. Afr. Mat. 31, 1283–1294 (2020)

    Article  MathSciNet  Google Scholar 

  9. El-Sayed, A.M.A., Elasddad, E.E., Madkour, H.F.A.: On Cauchy problem of a delay stochastic differential equation of arbitrary (fractional) orders. Fract. Differ. Calc. 5(2), 163–170 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

  11. Guo, Y., Shu, X.B., Li, Y., Xu, F.: The existence and Hyers–Ulam stability of solution for an impulsive Riemann–Liouville fractional neutral functional stochastic differential equation with infinite delay of order \(1<\beta <2\). Bound. Value Probl. 59, 2019 (2019)

    MathSciNet  Google Scholar 

  12. Hafiz, F.M.: The fractional calculus for some stochastic processes. Stoch. Anal. Appl. 22(2), 507–523 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kaliraj, K., Priya, P.K.L., Ravichandran, C.: An explication of finite-time stability for fractional delay model with neutral impulsive conditions. Qual. Theory Dyn. Syst. 21, 161 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  14. Khudair, A.R., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016)

    Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, 204, Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  16. Kumlin, P.: A note on fixed point theory. In: Mathematics, Chalmers and GU (2004)

  17. Lakshmikantham, V., Leela, S., Devi, J.V.: Theory of Fractional Dynamic Systems. Cambridge Scientific Publishers, Cambridge (2009)

    MATH  Google Scholar 

  18. Laledj, N., Salim, A., Lazreg, J.E., Abbas, S., Ahmad, B., Benchohra, M.: On implicit fractional \(q\)-difference equations: analysis and stability. Math. Methods Appl. Sci. 45(17), 10775–10797 (2022)

    Article  MathSciNet  Google Scholar 

  19. Luo, D., Alam, M., Zada, A., Riaz, U., Luo, Z.: Existence and stability of implicit fractional differential equations with Stieltjes boundary conditions having Hadamard derivatives. Complexity 2021(3), 1–36 (2021)

    Google Scholar 

  20. Manjula, M., Kaliraj, K., Nisar, K.S., Ravichandran, C.: Existence, uniqueness and approximation of nonlocal fractional differential equation of Sobolev type with impulses. AIMS Math. 8(2), 4645–4665 (2023)

    Article  MathSciNet  Google Scholar 

  21. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  22. Morsy, A., Nisar, K.S., Ravichandran, C., Anusha, C.: Sequential fractional order neutral functional integro differential equations on time scales with Caputo fractional operator over Banach spaces. AIMS Math. 8(3), 5934–5949 (2023)

    Article  MathSciNet  Google Scholar 

  23. Nisar, K.S., Logeswari, K., Vijayaraj, V., Baskonus, H.M., Ravichandran, C.: Fractional order modeling the Gemini virus in Capsicum annuum with optimal control. Fractal Fract. 6(61), 1–19 (2022)

    Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. Riaz, U., Zada, A.: Analysis of \((\alpha ,\beta )\)-order coupled implicit caputo fractional differential equations using topological degree method. Int. J. Nonlinear Sci. Numer. Simul. 1–19, 2020 (2020)

    Google Scholar 

  26. Riaz, U., Zada, A., Ali, Z., Ahmad, M., Xu, J., Fu, Z.: Analysis of nonlinear coupled systems of impulsive fractional differential equations with Hadamard derivatives. Math. Probl. Eng. 1–20, 2019 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Riaz, U., Zada, A., Ali, Z., Cui, Y., Xu, J.: Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives. Adv. Differ. Equ. 2019(226), 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  28. Salim, A., Lazreg, J.E., Ahmad, B., Benchohra, M., Nieto, J.J.: A study on \(k\)-generalized \(\psi \)-Hilfer derivative operator. Viet. J. Math. (2022). https://doi.org/10.1007/s10013-022-00561-8

    Article  Google Scholar 

  29. Salim, A., Alzabut, J., Sudsutad, W., Thaiprayoon, C.: On impulsive implicit \(\psi \)-caputo hybrid fractional differential equations with retardation and anticipation. Mathematics (MDPI) 10(24), 4821 (2022)

    Article  Google Scholar 

  30. Sathiyaraj, T., Wang, J., Balasubramaniam, P.: Ulam’s stability of Hilfer fractional stochastic differential systems. Eur. Phys. J. Plus 2019(134), 605 (2019)

    Article  Google Scholar 

  31. Ulam, S.M.: A Collection of the Mathematical Problems. Interscience, New York (1960)

    MATH  Google Scholar 

  32. Vu, H., Ngo, H.V.: On initial value problem of random fractional differential equation with impulsive. Hacet. J. Math. Stat. 49(1), 282–293 (2019)

    MATH  Google Scholar 

  33. Zada, A., Alam, M., Riaz, U.: Analysis of q-fractional implicit boundary value problems having Stieltjes integral conditions. Math. Methods Appl. Sci. 44(6), 4381–4413 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zada, A., Alzabut, J., Waheed, H., Popa, I.L.: Ulam hyers stability of impulsive integrodifferential equations with Riemann–Liouville boundary conditions. Adv. Differ. Equ. 2020, 64 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zada, A., Riaz, U., Khan, F.: Hyers–Ulam stability of impulsive integral equations. Boll. Unione Mat. Ital. 12(3), 453–467 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, KSA, for funding this work through Research Group under grant number (R.G.P-1/3/43).

Author information

Authors and Affiliations

Authors

Contributions

The authors have contributed equally to this manuscript. They read and approved the final manuscript.

Corresponding authors

Correspondence to Sumbel Shahid, Shahid Saifullah or Usman Riaz.

Ethics declarations

Conflict of interest

There is no competing interests regarding this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahid, S., Saifullah, S., Riaz, U. et al. Existence and Stability Results for Nonlinear Implicit Random Fractional Integro-Differential Equations. Qual. Theory Dyn. Syst. 22, 81 (2023). https://doi.org/10.1007/s12346-023-00772-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00772-5

Keywords

Mathematics Subject Classification

Navigation