Skip to main content
Log in

N-Convergence and Chaotic Properties of Non-autonomous Discrete Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Let \(f_{1,\infty }:=(f_{n})_{n=1}^{\infty }\) be a non-autonomous dynamical system on a compact metric space X. For a given \(N \in \mathbb {N}\) we consider Nth iterate \(f_{1,\infty }^{[N]}\) of the system (i.e. \(f_{1,\infty }^{[N]}=(f_{N(n-1)+1}^{N})_{n=1}^{\infty }\), where \(f_{i}^{n}=f_{i+(n-1)}\circ \cdots \circ f_{i}\) and \(f_{1}^{0}=\textrm{id}_{X}\).) We also investigate N-convergent non-autonomous systems this is weaker notion than uniform convergence. In this setting we generalize results regarding different types of chaos. Particularly we prove

  1. (1)

    \(f_{1, \infty }\) is distributionally chaotic of type 1 if and only if \(f_{1,\infty }^{[N]}\) is also.

  2. (2)

    \(f_{1, \infty }\) is distributionally chaotic of type 2 if and only if \(f_{1,\infty }^{[N]}\) is also.

  3. (3)

    \(f_{1, \infty }\) is distributionally chaotic of type \(2\frac{1}{2}\) if and only if \(f_{1,\infty }^{[N]}\) is also.

  4. (4)

    \(f_{1, \infty }\) is \({\mathcal {P}}\)-chaotic if and only if \(f_{1, \infty }^{[N]}\) is also, where \({\mathcal {P}}\)-chaos denotes one of the following properties: Li-Yorke chaos, dense chaos, dense \(\delta \)-chaos, generic chaos, generic \(\delta \)-chaos, Li-Yorke sensitivity and spatio-temporal chaos.

  5. (5)

    \(f_{1,\infty }\) is sensitive (resp. ergodically sensitive) if and only if \(f_{1, \infty }^{[N]}\) is also.

We also discuss and partly solve a problem given by [Xinxing Wu, Peiyong Zhu, Chaos in a class of non-autonomous discrete systems. Applied Mathematics Letters 26 (2013) 431-436]. Furthermore, we present two examples which show that conditions of N-convergence and continuity in some results cannot be removed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, X., Zhu, P.: Chaos in a class of non-autonomous discrete systems. Appl. Math. Lett. 6(4), 431–436 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kolyada, S.F., Snoha, Ľ: Topological entropy of nonautonomous dynamical systems. Random Comput. Dynam. 4(2–3), 205–233 (1996)

    MathSciNet  MATH  Google Scholar 

  3. Kolyada, S., Misiurewicz, M., Snoha, Ľ: Topological entropy of nonautononous piecewise monotone dynamical systems on the interval. Fund. Math. 160(2), 161–181 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dvořáková, J.: On a problem of iteration invariants for distributional chaos. Commun. Nonlinear Sci. Numer. Simul. 17(2), 785–787 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Elaydi, S.: Nonautonomous difference equations: open problems and conjectures, Fields Inst. Communications 42, 423–428 (2004)

    MATH  Google Scholar 

  6. Elaydi, S., Sacker, R.J.: Nonautonomous beverton-holt equations and the cushing-Henson conjectures. J. Differ. Equ. Appl. 11(4–5), 337–346 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, T.Y., Yorke, J.: Period three implies chaos. Amer. Math. Monthly 82(10), 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  8. Piórek, J.: On generic chaos of shifts in function spaces. Ann. Polon. Math. 52(2), 139–146 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ľ. Snoha, Generic chaos, European Conference on Iteration Theory (Batschuns, 1989), World Sci. Publ., River Edge, NJ, (1991), 347–351

  10. Akin, E., Kolyada, S.F.: Li-Yorke sensitivity. Nonlinearity 16(4), 1421–1433 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kolyada, S.: Li-Yorke sensitivity and other concepts of chaos. Ukrain. Mat. Zh. 56(8), 1043–1061 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schweizer, B., Smítal, J.: Measures of chaos and a spectral decomposition of dynamical systems on the interval. Trans. Amer. Math. Soc. 344(2), 737–754 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oprocha, P., Wilczynski, P.: Shift spaces and distributional chaos. Chaos Solit. Fractals 31(2), 347–355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Balibrea, F., Smítal, J., Štefánková, M.: The three versions of distributional chaos. Chaos Solit. Fractals 23(5), 1581–1583 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Smítal, J., Štefánková, M.: Distributional chaos for triangular maps. Chaos Solit. Fractals 21(5), 1125–1128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, L., Huang, G., Huan, S.: Distributional chaos in a sequence. Nonlinear Anal. 67(7), 2131–2136 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, L., Huan, S., Huang, G.: A note on Schweizer-Smital chaos. Nonlinear Anal. 68(6), 1682–1686 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, R.: A note on the three versions of distributional chaos. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1993–1997 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Oprocha, P., Štefánková, M.: Specification property and distributional chaos almost everywhere. Proc. Amer. Math. Soc. 136(11), 3931–3940 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dvořáková, J.: Chaos in nonautonomous discrete dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 17(12), 4649–4652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hantáková, J., Roth, Z., Roth, S.: On the weakest version of distributional chaos. Int. J. Bifur. Chaos Appl. Sci. Engrg. 26(14), 1650235 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hantáková, J.: Iteration problem for distributional chaos. Int. J. Bifur. Chaos. Appl. Sci. Eng. 27(12), 1750183 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, R.: A note on shadowing with chain transitivity. Commun. Nonlinear Sci. Numer. Simul. 17(7), 2815–2823 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, R.: The large deviations theorem and ergodic sensitivity. Commun. Nonlinear Sci. Numer. Simul. 18(4), 819–825 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Subrahmonian Moothathu, T.K.: Stronger forms of sensitivity for dynamical systems. Nonlinearity 20(9), 2115–2126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

First author was supported by the National Natural Science Foundation of China (Nos. 11501391), Opening Project of Artificial Intelligence Key Laboratory of Sichuan Province (2018RZJ03), Opening Project of Bridge Non-destruction Detecting and Engineering Computing Key Laboratory of Sichuan Province (2018QZJ03), Ministry of Education Science and Technology Development center (2020QT13), the Opening Project of Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things (2020WZJ01) and Scientific Research Project of Sichuan University of Science and Engineering (2020RC24)

Funding

Second author was supported by RVO funding for IČ47813059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Málek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Málek, M. N-Convergence and Chaotic Properties of Non-autonomous Discrete Systems. Qual. Theory Dyn. Syst. 22, 78 (2023). https://doi.org/10.1007/s12346-023-00779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00779-y

Keywords

Mathematics Subject Classification

Navigation