Skip to main content
Log in

Study on a Second-Order Ordinary Differential Equation for the Ocean Flow in Arctic Gyres

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

By considering the radial solutions for a semi-linear elliptic equation model of gyres and introducing exponential transformation, we derive a second-order ordinary differential equation, which acts as a new model for the ocean flow in arctic gyres. Then we investigate the solutions for constant vorticity, linear vorticity and nonlinear vorticity in this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availibility Statement

No data.

References

  1. Apel, J.: Principles of Ocean Physics. Academic Press, London (1987)

    Google Scholar 

  2. Chu, J.: On a differential equation arising in geophysics. Monatsh. Math. 187, 499–508 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chu, J.: On a nonlinear model for arctic gyres. Ann. Mat. Pura. Appl. 197, 651–659 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chu, J.: On a nonlinear integral equation for the ocean flow in arctic gyres. Q. Appl. Math. 76, 489–498 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chu, J.: Monotone solutions of a nonlinear differential equation for geophysical fluid flows. Nonlinear Anal. 166, 144–153 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Conmmun. Math. Phys. 370, 1–48 (2019)

    Google Scholar 

  7. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  Google Scholar 

  8. Constantin, A., Johnson, R.S.: Large gyres as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Proc. R. Soc. Lond. Ser. A. 473, 20170063 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)

    Article  Google Scholar 

  10. Constantin, A., Johnson, R.S.: Ekman-type solutions for shallow-water flows on a rotating sphere: a new perspective on a classical problem. Phys. Fluids 31, 021401 (2019)

    Article  Google Scholar 

  11. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D. C. Heath and Company, Boston, Mass (1965)

    MATH  Google Scholar 

  13. Daners, D.: The Mercator and stereographic projections, and many in between. Am. Math. Mon. 119, 199–210 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haziot, S.V.: Study of an elliptic partial differential equation modeling the ocean flow in Arctic gyres. J. Math. Fluid Mech. 23, 1–9 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Haziot, S.V.: Explicit two-dimensional solutions for the ocean flow in Arctic gyres. Monatsh. Math. 189, 429–440 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Henry, D., Martin, C.I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differ. Equ. 266, 6788–6808 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, Q., Fečkan, M., Wang, J.: Monotonicity of horizontal fluid velocity and pressure gradient distribution beneath equatorial Stokes waves. Monatsh. Math. 198, 805–817 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marynets, K.: A weighted Sturm-Liouville problem related to ocean flows. J. Math. Fluid Mech. 20, 929–935 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marynets, K.: A nonlinear two-point boundary-value problem in geophysics. Monatsh. Math. 188, 287–295 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Miao, F., Fečkan, M., Wang, J.: Constant vorticity water flows in the modified equatorial \(\beta \)-plane approximation. Monatsh. Math. 197, 517–527 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Miao, F., Fečkan, M., Wang, J.: Stratified equatorial flows in the \(\beta \)-plane approximation with a free surface. Monatsh. Math. 200, 315–334 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  23. Viudez, A., Dritschel, D.G.: Vertical velocity in mesoscale geophysical flows. J. Fluid Mech. 483, 199–223 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, W., Fečkan, M., Wang, J.: Positive solutions to integral boundary value problems from geophysical fluid flows. Monatsh. Math. 193, 901–925 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, W., Wang, J., Fečkan, M.: Existence and uniqueness results for a second order differential equation for the ocean flow in arctic gyres. Monatsh. Math. 193, 177–192 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, J., Fečkan, M., Zhang, W.: On the nonlocal boundary value problem of geophysical fluid flows. Z. Angew. Math. Phys. 72, 419–434 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, J., Fečkan, M., Wen, Q., O’Regan, D.: Existence and uniqueness results for modeling jet flow of the Antarctic circumpolar current. Monatsh. Math. 194, 1–21 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, J., Zhang, W., Fečkan, M.: Periodic boundary value problem for second-order differential equations from geophysical fluid flows. Monatsh. Math. 195, 523–540 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rugh, R.C.: Linear System Theory. Prentice Hall, Upper Saddle River (1996)

    MATH  Google Scholar 

  30. Rus, I.A.: Ulam stability of ordinary differential equations. Stud. U. Babes-bol. Mat. 54, 125–133 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. The authors thank the help from the editor too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (12161015), Guizhou Provincial Science and Technology Projects (Qian Ke He Ji Chu-ZK[2023]yiban034), Qian Ke He Ping Tai Ren Cai-YSZ[2022]002, the Slovak Research and Development Agency under the contract No. APVV-18-0308, and the Slovak Grant Agency VEGA No. 2/0127/20 and No. 1/0084/23.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Fečkan, M. & Wang, J. Study on a Second-Order Ordinary Differential Equation for the Ocean Flow in Arctic Gyres. Qual. Theory Dyn. Syst. 22, 77 (2023). https://doi.org/10.1007/s12346-023-00778-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00778-z

Keywords

Mathematics Subject Classification

Navigation