Skip to main content
Log in

Motivic integration and birational invariance of BCOV invariants

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Bershadsky, Cecotti, Ooguri and Vafa constructed a real valued invariant for Calabi–Yau manifolds, which is now called the BCOV torsion. Based on it, a metric-independent invariant, called BCOV invariant, was constructed by Fang–Lu–Yoshikawa and Eriksson–Freixas i Montplet–Mourougane. The BCOV invariant is conjecturally related to the Gromov–Witten theory via mirror symmetry. Based upon previous work of the second author, we prove the conjecture that birational Calabi–Yau manifolds have the same BCOV invariant. We also extend the construction of the BCOV invariant to Calabi–Yau varieties with Kawamata log terminal singularities, and prove its birational invariance for Calabi–Yau varieties with canonical singularities. We provide an interpretation of our construction using the theory of motivic integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we use the definition of [31], which differs from the one in [34] by an explicit power of \(2\pi \).

  2. i.e., their bounded derived categories of coherent sheaves are equivalent as \({\mathbb {C}}\)-linear triangulated categories. Note that the derived equivalence of birational Calabi–Yau threefolds was proved by Bridgeland [15, Theorem 1.1] and there are derived equivalent Calabi–Yau threefolds that are not birationally equivalent [14, 27, 56].

  3. The terminology refers to the fact that if \(\chi (X)\ne 0\), then \(\frac{\phi ({\mathbb {P}}(V))}{\chi ({\mathbb {P}}(V))}=\frac{\phi (X)}{\chi (X)}+\frac{\phi ({\mathbb {C}}\textrm{P}^{r-1})}{\chi ({\mathbb {C}}\textrm{P}^{r-1})}\).

  4. It is usually denoted by \(Z(X, {\mathcal {I}}_{D}; T)\), where \({\mathcal {I}}_{D}={\mathcal {O}}_{X}(-D)\) is the ideal sheaf of D.

References

  1. Abramovich, D., Karu, K., Matsuki, K., Włodarczyk, J.: Torification and factorization of birational maps. J. Am. Math. Soc. 15(3), 531–572 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramovich, D., Temkin, M.: Functorial factorization of birational maps for qe schemes in characteristic 0. Algebra Number Theory 13(2), 379–424 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakker, B., Lehn, C.: The global moduli theory of symplectic varieties. J. für die Reine und Angew. Math. [Crelle’s Journal] (2022)

  4. Batyrev, V.V.: Stringy Hodge numbers of varieties with Gorenstein canonical singularities. In: Integrable Systems and Algebraic Geometry (Kobe/Kyoto, 1997), pp. 1–32. World Sci. Publ., River Edge, NJ (1998)

  5. Batyrev, V.V.: Birational Calabi–Yau \(n\)-folds have equal Betti numbers. In: New trends in algebraic geometry (Warwick, 1996), vol. 264 of London Math. Soc. Lecture Note Ser., pp. 1–11. Cambridge Univ. Press, Cambridge (1999)

  6. Baum, P., Fulton, W., MacPherson, R.: Riemann-Roch for singular varieties. Inst. Hautes Études Sci. Publ. Math. 45, 101–145 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1984), 1983

  8. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Holomorphic anomalies in topological field theories. Nuclear Phys. B 405(2–3), 279–304 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bershadsky, M., Cecotti, S., Ooguri, H., Vafa, C.: Kodaira–Spencer theory of gravity and exact results for quantum string amplitudes. Commun. Math. Phys. 165(2), 311–427 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berthomieu, A., Bismut, J.-M.: Quillen metrics and higher analytic torsion forms. J. Reine Angew. Math. 457, 85–184 (1994)

    MathSciNet  MATH  Google Scholar 

  11. Bismut, J.-M.: Quillen metrics and singular fibres in arbitrary relative dimension. J. Algebraic Geom. 6(1), 19–149 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Bismut, J.-M.: Holomorphic and de Rham torsion. Compos. Math. 140(5), 1302–1356 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bismut, J.-M., Lebeau, G.: Complex immersions and Quillen metrics. Inst. Hautes Études Sci. Publ. Math. (74):ii+298 pp. (1992), 1991

  14. Borisov, L., Căldăraru, A.: The Pfaffian-Grassmannian derived equivalence. J. Algebraic Geom. 18(2), 201–222 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bridgeland, T.: Flops and derived categories. Invent. Math. 147(3), 613–632 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bridgeland, T., King, A., Reid, M.: The McKay correspondence as an equivalence of derived categories. J. Am. Math. Soc. 14(3), 535–554 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Campana, F.: Orbifoldes à première classe de Chern nulle. In: The Fano Conference, pp. 339–351. Univ. Torino, Turin (2004)

  18. Candelas, P., de la Ossa, X., Green, P., Parkes, L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nuclear Phys. B 359(1), 21–74 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chambert-Loir, A., Nicaise, J., Sebag, J.: Motivic integration, volume 325 of Progress in Mathematics. Birkhäuser/Springer, New York (2018)

  20. Chang, H.-L., Guo, S., Li, J.: Polynomial structure of Gromov–Witten potential of quintic \(3\)-folds. Ann. Math. (2) 194(3), 585–645 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chang, H.-L., Guo, S., Li, J., Li, W.-P.: BCOV’s Feynman rule of quintic 3-folds. preprint, arXiv:1810.00394 (2018)

  22. Chang, H.-L., Guo, S., Li, J., Li, W.-P.: The theory of N-mixed-spin-P fields. Geom. Topol. 25(2), 775–811 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chang, H.-L., Li, J., Li, W.-P., Liu, C.-C.M.: Mixed-Spin-P fields of Fermat quintic polynomials. Cambridge J. Math., Volume 7, Number 3 (2019)

  24. Chang, H.-L., Li, J., Li, W.-P., Liu, C.-C.M.: An effective theory of GW and FJRW invariants of quintic Calabi–Yau manifolds. J. Differ. Geom. 120(2), 251–306 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Chen, Q., Janda, F., Ruan, Y.: The logarithmic gauged linear sigma model. Invent. Math. 225, 1077–1154 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Craw, A.: An introduction to motivic integration. In: Strings and geometry, vol. 3 of Clay Math. Proc., pp. 203–225. American Mathematical Society, Providence, RI (2004)

  27. Căldăraru, A.: Non-birational Calabi–Yau threefolds that are derived equivalent. Internat. J. Math. 18(5), 491–504 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dai, X., Yoshikawa, K.-I.: Analytic torsion for log-Enriques surfaces and Borcherds product. Forum Math. Sigma, 10:Paper No. e77, 54 (2022)

  29. Denef, J., Loeser, F.: Germs of arcs on singular algebraic varieties and motivic integration. Invent. Math. 135(1), 201–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Denef, J., Loeser, F.: Motivic integration, quotient singularities and the McKay correspondence. Compos. Math. 131(3), 267–290 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Eriksson, D., Freixas i Montplet, G., Mourougane, C.: BCOV invariants of Calabi–Yau manifolds and degenerations of Hodge structures. Duke Math. J. 170(3), 379–454 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Eriksson, D., Freixas i Montplet, G., Mourougane, C.: On genus one mirror symmetry in higher dimensions and the BCOV conjectures. Forum Math. Pi, 10:Paper No. e19, 53 (2022)

  33. Fang, H., Lu, Z.: Generalized Hodge metrics and BCOV torsion on Calabi–Yau moduli. J. Reine Angew. Math. 588, 49–69 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Fang, H., Lu, Z., Yoshikawa, K.-I.: Analytic torsion for Calabi–Yau threefolds. J. Differ. Geom. 80(2), 175–259 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Flenner, H., Kosarew, S.: On locally trivial deformations. Publ. Res. Inst. Math. Sci. 23(4), 627–665 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  36. Flenner, H., Zaidenberg, M.: Log-canonical forms and log canonical singularities. Math. Nachr. 254(255), 107–125 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fujiki, A.: On primitively symplectic compact Kähler \(V\)-manifolds of dimension four. In: Classification of algebraic and analytic manifolds (Katata, 1982), volume 39 of Progr. Math., pp. 71–250. Birkhäuser Boston, Boston, MA (1983)

  38. Givental, A.B.: Equivariant Gromov–Witten invariants. Int. Math. Res. Notices 13, 613–663 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  39. Givental, A.B.: A mirror theorem for toric complete intersections. In: Topological Field Theory, Primitive Forms and Related Topics (Kyoto, 1996), vol. 160 of Progr. Math., pp. 141–175. Birkhäuser Boston, MA (1998)

  40. Guo, S., Janda, F., Ruan, Y.: A mirror theorem for genus two Gromov–Witten invariant of quintic 3-fold. preprint, arXiv: 1709.07392 (2017)

  41. Guo, S., Janda, F., Ruan, Y.: Structure of higher genus Gromov–Witten invariants of quintic 3-folds. preprint, arXiv: 1812.11908, (2018)

  42. Kato, K.: Heights of motives. Proc. Jpn. Acad. Ser. A Math. Sci. 90(3), 49–53 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Knudsen, F.F., Mumford, D.: The projectivity of the moduli space of stable curves. I. Preliminaries on “det’’ and “Div’’. Math. Scand. 39(1), 19–55 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kollár, J., Mori, S.: Birational geometry of algebraic varieties, vol. 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, (1998). With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original

  45. Kontsevich, M.: Motivic Integration. Lecture at Orsay (1995)

  46. Lian, B.H., Liu, K., Yau, S.-T.: Mirror principle. I. Asian J. Math. 1(4), 729–763 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ma, X.: Orbifolds and analytic torsions. Trans. Am. Math. Soc. 357(6), 2205–2233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ma, X.: Orbifold submersion and analytic torsions. In: Arithmetic L-functions and Differential Geometric Methods, vol. 338 of Progr. Math., pp. 141–177. Birkhäuser/Springer, Cham (2021)

  49. Maillot, V., Rössler, D.: On the birational invariance of the BCOV torsion of Calabi–Yau threefolds. Commun. Math. Phys. 311(2), 301–316 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Morrison, D.R.: Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians. J. Am. Math. Soc. 6(1), 223–247 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  51. Quillen, D.: Determinants of Cauchy–Riemann operators on Riemann surfaces. Funct. Anal. Appl. 19, 31–34 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  52. Ray, D.B., Singer, I.M.: Analytic torsion for complex manifolds. Ann. Math. 2(98), 154–177 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  53. Sakai, F.: Kodaira dimensions of complements of divisors. In: Complex Analysis and Algebraic Geometry, pp. 239–257 (1977)

  54. Satake, I.: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. USA 42, 359–363 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  55. Satake, I.: The Gauss–Bonnet theorem for \(V\)-manifolds. J. Math. Soc. Jpn. 9, 464–492 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  56. Uehara, H.: A counterexample of the birational Torelli problem via Fourier–Mukai transforms. J. Algebraic Geom. 21(1), 77–96 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Włodarczyk, J.: Toroidal varieties and the weak factorization theorem. Invent. Math. 154(2), 223–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  58. Yasuda, T.: Twisted jets, motivic measures and orbifold cohomology. Compos. Math. 140(2), 396–422 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  59. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

  60. Yoshikawa, K.-I.: Analytic torsion and an invariant of Calabi–Yau threefold. In: Differential geometry and physics, vol. 10 of Nankai Tracts Math., pp. 480–489. World Sci. Publ., Hackensack, NJ (2006)

  61. Zhang, Y.: BCOV invariant and blow-up. To appear in Compositio Mathematica. arxiv:2003.03805

  62. Zhang, Y.: An extension of BCOV invariant. International Mathematics Research Notices, rnaa265 (2020)

  63. Zinger, A.: Standard versus reduced genus-one Gromov–Witten invariants. Geom. Topol. 12(2), 1203–1241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zinger, A.: The reduced genus 1 Gromov–Witten invariants of Calabi–Yau hypersurfaces. J. Am. Math. Soc. 22(3), 691–737 (2009)

Download references

Acknowledgements

We are indebted to Professor Ken-Ichi Yoshikawa for his guidance throughout the project. We would like to thank Professor Xianzhe Dai, Professor Dennis Eriksson, Professor Gerard Freixas i Montplet, Professor Chen Jiang, Professor Xiaonan Ma, and Professor Vincent Maillot for helpful discussions. Lie Fu is supported by the Radboud Excellence Initiative from the Radboud University, by the project FanoHK (ANR-20-CE40-0023) of Agence Nationale de la Recherche in France, and by the University of Strasbourg Institute for Advanced Study (USIAS). Yeping Zhang is supported by KIAS individual Grant MG077401 at Korea Institute for Advanced Study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lie Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Zhang, Y. Motivic integration and birational invariance of BCOV invariants. Sel. Math. New Ser. 29, 25 (2023). https://doi.org/10.1007/s00029-023-00832-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-023-00832-3

Keywords

Mathematics Subject Classification

Navigation