Skip to main content
Log in

Poles of finite-dimensional representations of Yangians

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \({\mathfrak {g}}\) be a finite-dimensional simple Lie algebra over \({\mathbb {C}}\), and let \(Y_\hbar ({\mathfrak {g}})\) be the Yangian of \({\mathfrak {g}}\). In this paper, we study the sets of poles of the rational currents defining the action of \(Y_\hbar ({\mathfrak {g}})\) on an arbitrary finite-dimensional vector space V. Using a weak, rational version of Frenkel and Hernandez’ Baxter polynomiality, we obtain a uniform description of these sets in terms of the Drinfeld polynomials encoding the composition factors of V and the inverse of the q-Cartan matrix of \({\mathfrak {g}}\). We then apply this description to obtain a concrete set of sufficient conditions for the cyclicity and simplicity of the tensor product of any two irreducible representations, and to classify the finite-dimensional irreducible representations of the Yangian double.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See, however, [37] and §4.7 for an interpretation of \(T_i(u)\) itself as a transfer matrix.

  2. For \({\mathfrak {g}}=\mathfrak {sl}_2\), one can deduce that any such extension must be given as in Part (ii) of [44, Prop. 2.1]. However, it is easy to see that these formulae do not converge in \(\textrm{D}Y_{\hbar }(\mathfrak {sl}_{2})^{\otimes 2}\).

  3. See, however, the recent paper [37] which gives an alternative construction of \(T_i(u)\) using the representation theory of shifted Yangians. This is expanded upon in Sect. 4.7.

  4. The factor of \(q^{m-d_j}\) is due to different conventions on labeling finite-dimensional irreducible modules; the \(U_q(L{\mathfrak {g}})\)-modules \(V_{r_i}^{(i)}\) and \(V_1^{(j)}\) correspond to the \(Y_\hbar ({\mathfrak {g}})\)-modules \(L_{r_i\varpi _i}(m\hbar /2)\) and \(L_{\varpi _j}(d_j\hbar /2)\), respectively.

  5. As we follow the Bourbaki convention for the labels of Dynkin diagrams [5], our \({\textsf{B}}_r\) is \({\textsf{C}}_r\) in [22, Conj. 6.7].

References

  1. Akasaka, T., Kashiwara, M.: Finite-dimensional representations of quantum affine algebras. Publ. Res. Inst. Math. Sci. 33(5), 839–867 (1997)

    Article  MATH  Google Scholar 

  2. Appel, A., Gautam, S.: An explicit isomorphism between quantum and classical \(\mathfrak{sl} _n\). Transf. Groups 25(4), 945–980 (2020)

    Article  MATH  Google Scholar 

  3. Appel, A., Gautam, S., Wendlandt, C.: On a conjecture of Khoroshkin and Tolstoy (2022). arXiv:2206.14857

  4. Beck, J., Kac, V.G.: Finite-dimensional representations of quantum affine algebras at roots of unity. J. Am. Math. Soc. 9(2), 391–423 (1996)

    Article  MATH  Google Scholar 

  5. Bourbaki, N.: Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, (2002), Translated from the 1968 French original by Andrew Pressley

  6. Chari, V.: Braid group actions and tensor products. Int. Math. Res. Not. 7, 357–382 (2002)

    Article  MATH  Google Scholar 

  7. Chari, V., Pressley, A.: Fundamental representations of Yangians and singularities of \(R\)-matrices. J. Reine Angew. Math. 417, 87–128 (1991)

    MATH  Google Scholar 

  8. Chari, V., Pressley, A.: Quantum affine algebras. Commun. Math. Phys. 142, 261–283 (1991)

    Article  MATH  Google Scholar 

  9. Chari, V., Pressley, A.: Yangians, integrable quantum systems and Dorey’s rule. Commun. Math. Phys. 181(2), 265–302 (1996)

    Article  MATH  Google Scholar 

  10. Chari, V., Pressley, A.: Yangians: their representations and characters, Acta Appl. Math. 44 no. 1-2, 39–58 (1996), Representations of Lie groups, Lie algebras and their quantum analogues

  11. Date, E., Okado, M.: Calculation of excitation spectra of the spin model related with the vector representation of the quantized affine algebra of type \(A^{(1)}_n\). Int. J. Mod. Phys. A 9(3), 399–417 (1994)

    Article  MATH  Google Scholar 

  12. Drinfeld, V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl. 32(1), 254–258 (1985)

    Google Scholar 

  13. Drinfeld, V.G.: A new realization of Yangians and quantum affine algebras. Soviet Math. Dokl. 36(2), 212–216 (1988)

    Google Scholar 

  14. Enriquez, B.: PBW and duality theorems for quantum groups and quantum current algebras. J. Lie Theory 13(1), 21–64 (2003)

    MATH  Google Scholar 

  15. Enriquez, B.: Quasi-Hopf algebras associated with semisimple Lie algebras and complex curves. Selecta Math. 9(1), 1–61 (2003)

    Article  MATH  Google Scholar 

  16. Finkelberg, M., Tsymbaliuk, A.: Shifted quantum affine algebras: integral forms in type \(A\). Arnold Math. J. 5(2–3), 197–283 (2019)

    Article  MATH  Google Scholar 

  17. Frenkel, E., Hernandez, D.: Baxter’s relations and spectra of quantum integrable models. Duke Math. J. 164(12), 2407–2460 (2015)

    Article  MATH  Google Scholar 

  18. Frenkel, E., Mukhin, E.: Combinatorics of \(q\)-characters of finite-dimensional representations of quantum affine algebras. Commun. Math. Phy. 216(1), 23–57 (2001)

    Article  MATH  Google Scholar 

  19. Frenkel, E., Reshetikhin, N.: Deformations of \(W\)-algebras associated to simple Lie algebras. Commun. Math. Phys. 197(1), 1–32 (1998)

    Article  MATH  Google Scholar 

  20. Frenkel, E., Reshetikhin, N.: The \(q\)-characters of representations of quantum affine algebras and deformed \({\cal{W}}\) algebras, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC), Contemp. Math., vol. 248, AMS, Providence, RI, pp. 163–205 (1999)

  21. Fujita, R.: Graded quiver varieties and singularities of normalized R-matrices for fundamental modules. Selecta Math. 28(1), 45 (2022)

    Article  MATH  Google Scholar 

  22. Fujita, R., Oh, S.-J.: Q-data and representation theory of untwisted quantum affine algebras. Commun. Math. Phys. 384(2), 1351–1407 (2021)

    Article  MATH  Google Scholar 

  23. Gautam, S., Toledano Laredo, V.: Yangians, quantum loop algebras, and abelian difference equations. J. Am. Math. Soc. 29(3), 775–824 (2016)

    Article  MATH  Google Scholar 

  24. Gautam, S., Toledano Laredo, V.: Meromorphic tensor equivalence for Yangians and quantum loop algebras. Publ. Math. Inst. Hautes Études Sci. 125, 267–337 (2017)

    Article  MATH  Google Scholar 

  25. Gautam, S., Toledano Laredo, V., Wendlandt, C.: The meromorphic \(R\)-matrix of the Yangian, Representation Theory, Mathematical Physics, and Integrable Systems: In Honor of Nicolai Reshetikhin (A. Alekseev, E. Frenkel, M. Rosso, B. Webster, and M. Yakimov, eds.), Progress in Mathematics, vol. 340, Birkhäuser/Springer, Cham, pp. 201–269 (2021)

  26. Gerasimov, A., Kharchev, S., Lebedev, D., Oblezin, S.: On a class of representations of the Yangian and moduli space of monopoles. Commun. Math. Phys. 260(3), 511–525 (2005)

    Article  MATH  Google Scholar 

  27. Guay, N., Nakajima, H., Wendlandt, C.: Coproduct for Yangians of affine Kac-Moody algebras. Adv. Math. 338, 865–911 (2018)

    Article  MATH  Google Scholar 

  28. Guay, N., Regelskis, V., Wendlandt, C.: Equivalences between three presentations of orthogonal and symplectic Yangians. Lett. Math. Phys. 109(2), 327–379 (2019)

    Article  MATH  Google Scholar 

  29. Guay, N., Tan, Y.: Local Weyl modules and cyclicity of tensor products for Yangians. J. Algebra 432, 228–251 (2015)

    Article  MATH  Google Scholar 

  30. Hernandez, D.: Algebraic approach to \(q, t\)-characters. Adv. Math. 187(1), 1–52 (2004)

    Article  MATH  Google Scholar 

  31. Hernandez, D.: Drinfeld coproduct, quantum fusion tensor category and applications. Proc. Lond. Math. Soc. 95(3), 567–608 (2007)

    Article  MATH  Google Scholar 

  32. Hernandez, D.: Simple tensor products. Invent. Math. 181(3), 649–675 (2010)

    Article  MATH  Google Scholar 

  33. Hernandez, D.: Cyclicity and \(R\)-matrices. Selecta Math. 25(2), 24 (2019)

    Article  MATH  Google Scholar 

  34. Hernandez, D.: Representations of shifted quantum affine algebras (2020). arXiv:2010.06996

  35. Hernandez, D., Jimbo, M.: Asymptotic representations and Drinfeld rational fractions. Compos. Math. 148(5), 1593–1623 (2012)

    Article  MATH  Google Scholar 

  36. Hernandez, D., Leclerc, B.: Quantum Grothendieck rings and derived Hall algebras. J. Reine Angew. Math. 701, 77–126 (2015)

    MATH  Google Scholar 

  37. Hernandez, D., Zhang, H.: Shifted Yangians and polynomial R-matrices, to appear in Publ. Res. Inst. Math. Sci. arXiv:2103.10993

  38. Iohara, K.: Bosonic representations of Yangian double \({\cal{D} }Y_{h}({\mathfrak{g} })\) with \({\mathfrak{g} }=\mathfrak{gl} _N,\mathfrak{sl} _N\). J. Phys. A 29(15), 4593–4621 (1996)

    Article  Google Scholar 

  39. Jing, N., Yang, F., Liu, M.: Yangian doubles of classical types and their vertex representations. J. Math. Phys. 61(5), 051704 (2020)

    Article  MATH  Google Scholar 

  40. Kang, S.-J., Kashiwara, M., Kim, M.: Symmetric quiver Hecke algebras and R-matrices of quantum affine algebras. Invent. Math. 211(2), 591–685 (2018)

    Article  MATH  Google Scholar 

  41. Kashiwara, M.: On level-zero representations of quantized affine algebras. Duke Math. J. 112(1), 117–175 (2002)

    Article  MATH  Google Scholar 

  42. Kashiwara, M., Kim, M., Oh, S.-J., Park, E.: Simply-laced root systems arising from quantum affine algebras. Compos. Math. 158(1), 168–210 (2022)

    Article  MATH  Google Scholar 

  43. Khoroshkin, S.: Central extension of the Yangian double, Algèbre non commutative, groupes quantiques et invariants (Reims: Sémin. Congr., vol. 2, Soc. Math. France, Paris 1997, 119–135 (1995)

  44. Khoroshkin, S., Tolstoy, V.: Yangian double. Lett. Math. Phys. 36, 373–402 (1996)

    Article  MATH  Google Scholar 

  45. Knight, H.: Spectra of tensor products of finite dimensional representations of Yangians. J. Algebra 174, 187–196 (1995)

    Article  MATH  Google Scholar 

  46. Levendorskii, S.: On generators and defining relations of Yangians. J. Geom. Phys. 12, 1–11 (1992)

    Article  Google Scholar 

  47. Levendorskii, S.: On PBW bases for Yangians. Lett. Math. Phys. 27(1), 37–42 (1993)

    Article  MATH  Google Scholar 

  48. Molev, A.: Yangians and classical Lie algebras, Mathematical Surveys and Monographs, vol. 143, A.M.S. (2007)

  49. Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules. Int. Math. Res. Not. 3, 125–150 (1998)

    Article  MATH  Google Scholar 

  50. Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules associated with skew Young diagrams. Duke Math. J. 112(2), 343–378 (2002)

    Article  MATH  Google Scholar 

  51. Oh, S.-J., Scrimshaw, T.: Categorical relations between Langlands dual quantum affine algebras: exceptional cases. Commun. Math. Phys. 368(1), 295–367 (2019)

    Article  MATH  Google Scholar 

  52. Tan, Y.: Braid group actions and tensor products for Yangians. arXiv:1510.01533 (2015)

  53. Varagnolo, M., Vasserot, E.: Standard modules of quantum affine algebras. Duke Math. J. 111(3), 509–533 (2002)

    Article  MATH  Google Scholar 

  54. Wendlandt, C.: The formal shift operator on the Yangian double. Int. Math. Res. Not. IMRN 14, 10952–11010 (2022)

    Article  MATH  Google Scholar 

  55. Wendlandt, C.: The restricted quantum double of the Yangian. arXiv:2204.00983, (2022)

  56. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press (1927)

  57. Young, C.: Quantum loop algebras and \(\ell \)-root operators. Transf. Groups 20(4), 1195–1226 (2015)

    Article  MATH  Google Scholar 

  58. Zhang, H.: Yangians and Baxter’s relations. Lett. Math. Phys. 110(8), 2113–2141 (2020)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported through the Simons foundation collaboration grant 526947. The second author gratefully acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), provided via the Postdoctoral Fellowships and Discovery Grants programs (Grant RGPIN-2022-03298 and DGECR-2022-00440). We are extremely grateful to the anonymous referee for pointing out the possible connection between the sets of poles and the work of Frenkel–Hernandez [17], which helped us to significantly simplify our arguments, and strengthen our results. In addition, we would like to thank David Hernandez, Ryo Fujita and Sasha Tsymbaliuk for several enlightening discussions and helpful remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Gautam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Tensor products of fundamental modules

Appendix A: Tensor products of fundamental modules

Let \({\mathfrak {g}}\) be an arbitrary simple Lie algebra, and let \({\textsf{d}}_{ij}(u)\in {\mathbb {C}}[u]\) denote the denominator of the normalized R-matrix \({\textsf{R}}_{L_{\varpi _i},L_{\varpi _j}}(u)\in {\text {End}}(L_{\varpi _i}\otimes L_{\varpi _j})(u)\), as defined in Sects. 7.5 and 7.8. The goal of this appendix is to prove Proposition A.4, which in particular asserts that the denominator \({\textsf{d}}_{ij}(u+\hbar d_j)\) is symmetric in the indices i and j. As indicated in the proof of Proposition 7.8, the \(U_q(L{\mathfrak {g}})\)-analogue of this result is well-known, having been established in “Appendix A” of the foundational paper [1] using Conjecture 2 therein, which is now a theorem. We begin with three lemmas pertinent to our proof of this proposition.

A.1 For each \(i\in {{{\textbf {I}}}}\), define \(\nu _i\in Y_\hbar ({\mathfrak {g}})\) by

$$\begin{aligned} \nu _i=\kappa \xi _{i,0}-\xi _{i,0}^2 +\sum _{\alpha \in R_+}(\alpha _i,\alpha )x_\alpha ^- x_\alpha ^+, \end{aligned}$$

where \(R_+\) is the set of positive roots of \({\mathfrak {g}}\) and \(x^{\pm }_{\alpha } \in {\mathfrak {g}}_{\pm \alpha }\subset Y_\hbar ({\mathfrak {g}})\) are chosen so as to have \((x^+_{\alpha },x^-_{\alpha })=1\), as in Sect. 2.9.

Lemma

There is an algebra isomorphism uniquely determined by \({\vartheta _\hbar }|_{{\mathfrak {g}}}={\textbf{1}}_{{\mathfrak {g}}}\) and

$$\begin{aligned} \vartheta _\hbar (\xi _{i1})=\xi _{i1}+\hbar \nu _i \quad \forall \quad i\in {{{\textbf {I}}}}. \end{aligned}$$

Moreover, for each \(a\in {\mathbb {C}}\), \(\vartheta _\hbar \) satisfies the relations

$$\begin{aligned} \vartheta _{\hbar }^{-1}=\vartheta _{-\hbar },\quad (\vartheta _\hbar \otimes \vartheta _\hbar )\circ \Delta =\Delta ^{\textrm{op}}\circ \vartheta _\hbar \quad \text { and }\quad \tau _a\circ \vartheta _{\hbar }=\vartheta _{\hbar }\circ \tau _a. \end{aligned}$$

Proof

For each fixed \(i\in {{{\textbf {I}}}}\), define \(J(d_ih_i)=\xi _{i1}+\frac{\hbar }{2}\nu _i\in Y_\hbar ({\mathfrak {g}})\). Then the set of elements \(\{x,J(d_i h_i)\}_{x\in {\mathfrak {g}}, i\in {{{\textbf {I}}}}}\) generates \(Y_\hbar ({\mathfrak {g}})\), and by [13, Thm. 1] and [27, §3.2] (see also [28, Thm. 2.6]), it is a subset of the generators \(\{x,J(x)\}_{x\in {\mathfrak {g}}}\) in Drinfeld’s original presentation of \(Y_\hbar ({\mathfrak {g}})\): see [12] and [28, Def. 2.1] (here we follow the notation of [28]). Since the defining relations in this presentation, as given in [28, Def. 2.1], depend only on \(\hbar ^2\), the assignment

$$\begin{aligned} x\mapsto x \qquad \text {and}\qquad J(d_i h_i)\mapsto J(d_i h_i) \quad \forall \quad i\in {{{\textbf {I}}}}\; \text { and }\; x\in {\mathfrak {g}}\end{aligned}$$

uniquely extends to a homomorphism of algebras \(\vartheta _\hbar :Y_{-\hbar }({\mathfrak {g}})\rightarrow Y_\hbar ({\mathfrak {g}})\). By definition of \(\{J(d_i h_i)\}_{i\in {{{\textbf {I}}}}}\), \(\vartheta _\hbar \) is uniquely determined by the requirement that \(\vartheta |_{\mathfrak {g}}={\textbf{1}}_{\mathfrak {g}}\) and \(\vartheta _\hbar (\xi _{i1})=\xi _{i1}+\hbar \nu _i\) for all \(i\in {{{\textbf {I}}}}\), as claimed. Moreover, \(\vartheta _\hbar \) is clearly invertible with \(\vartheta _\hbar ^{-1}=\vartheta _{-\hbar }\) and \(\tau _a\circ \vartheta _{\hbar }=\vartheta _{\hbar }\circ \tau _a\). We are thus left to prove that \((\vartheta _\hbar \otimes \vartheta _\hbar )\circ \Delta =\Delta ^{\textrm{op}}\circ \vartheta _\hbar \). This is a simple consequence of the fact that the coproduct \(\Delta \) of \(Y_\hbar ({\mathfrak {g}})\) is given on \(J(d_i h_i)\) by

$$\begin{aligned} \Delta (J(d_i h_i))=J(d_i h_i)\otimes 1 + 1\otimes J(d_i h_i) +\frac{\hbar }{2}[d_i h_i\otimes 1, \Omega ], \end{aligned}$$

where \(\Omega \in ({\mathfrak {g}}\otimes {\mathfrak {g}})^{\mathfrak {g}}\subset Y_\hbar ({\mathfrak {g}})\otimes Y_\hbar ({\mathfrak {g}})\) is the Casimir tensor. \(\square \)

A.2 Now let \({\mathcal {R}}(u)\in Y_\hbar ({\mathfrak {g}})^{\otimes 2}[\![u^{-1}]\!]\) be the universal R-matrix of \(Y_\hbar ({\mathfrak {g}})\), as in Sect. 7.5. More precisely, \({\mathcal {R}}(u)\) is the unique formal series in \(1+u^{-1}Y_\hbar ({\mathfrak {g}})^{\otimes 2}[\![u^{-1}]\!]\) satisfying the intertwiner equation

$$\begin{aligned} \tau _u\otimes {\textbf{1}}\circ \Delta ^{\textrm{op}}(x)= {\mathcal {R}}(u) \cdot \tau _u\otimes {\textbf{1}}\circ \Delta (x) \cdot {\mathcal {R}}(u)^{-1} \quad \forall \; x\in Y_\hbar ({\mathfrak {g}})\end{aligned}$$
(A.1)

in \(Y_\hbar ({\mathfrak {g}})^{\otimes 2}[u;u^{-1}]\!]\), in addition to the cabling identities

$$\begin{aligned} \begin{aligned} \Delta \otimes {\textbf{1}}({\mathcal {R}}(u))&= {\mathcal {R}}_{13}(u){\mathcal {R}}_{23}(u)\\ {\textbf{1}}\otimes \Delta ({\mathcal {R}}(u))&= {\mathcal {R}}_{13}(u){\mathcal {R}}_{12}(u) \end{aligned} \end{aligned}$$
(A.2)

in \(Y_\hbar ({\mathfrak {g}})^{\otimes 3}[\![u^{-1}]\!]\). Here \(\tau _u:Y_\hbar ({\mathfrak {g}})\rightarrow Y_\hbar ({\mathfrak {g}})[u]\) is the algebra homomorphism obtained replacing a by a formal variable u in the definition of the shift automorphism \(\tau _a\) from Sect. 2.5. The existence and uniqueness of \({\mathcal {R}}(u)\) was established by Drinfeld in [12, Thm. 3] using cohomological techniques, though the proof was not published. A constructive proof based on the Gauss decomposition of \({\mathcal {R}}(u)\) may be found in Theorem 7.4 and “Appendix B” of [25].

In addition \({\mathcal {R}}(u)\) satisfies

$$\begin{aligned} {\mathcal {R}}(u)^{-1}={\mathcal {R}}_{21}(-u) \quad \text { and }\quad (\tau _a\otimes \tau _b){\mathcal {R}}(u)={\mathcal {R}}(u+a-b) \end{aligned}$$
(A.3)

for all \(a,b\in {\mathbb {C}}\). In what follows, we write \({\mathcal {R}}^\hbar (u)\) for the universal R-matrix \({\mathcal {R}}(u)\) of \(Y_\hbar ({\mathfrak {g}})\) to emphasize its dependence on \(\hbar \).

Lemma

The universal R-matrices of \(Y_\hbar ({\mathfrak {g}})\) and \(Y_{-\hbar }({\mathfrak {g}})\) are related by

$$\begin{aligned} {\mathcal {R}}^\hbar (u)=(\vartheta _{\hbar }\otimes \vartheta _\hbar )\left( {\mathcal {R}}^{-\hbar }_{21}(-u)\right) . \end{aligned}$$

Proof

By the first relation of (A.3), this is equivalent to the identity

$$\begin{aligned} {\mathcal {R}}^\hbar (u)=(\vartheta _{\hbar }\otimes \vartheta _\hbar )\left( {\mathcal {R}}^{-\hbar }(u)\right) ^{-1}. \end{aligned}$$

It follows readily from the relations \((\vartheta _\hbar \otimes \vartheta _\hbar )\circ \Delta =\Delta ^{\textrm{op}}\circ \vartheta _\hbar \) and \(\tau _a\circ \vartheta _{\hbar }=\vartheta _{\hbar }\circ \tau _a\) of Lemma A.1 that \((\vartheta _{\hbar }\otimes \vartheta _\hbar )\left( {\mathcal {R}}^{-\hbar }(u)\right) ^{-1}\) satisfies the intertwiner equation (A.1) and the cabling identities (A.2) satisfied by \({\mathcal {R}}^\hbar (u)\). As it also lies in \(1+u^{-1}Y_\hbar ({\mathfrak {g}})^{\otimes 2}[\![u^{-1}]\!]\), it coincides with \({\mathcal {R}}^\hbar (u)\) by uniqueness. \(\square \)

A.3 Given a representation V of \(Y_\hbar ({\mathfrak {g}})\), we shall denote the associated representation \(\vartheta _\hbar ^*(V)\) of \(Y_{-\hbar }({\mathfrak {g}})\) by \(V^{\vartheta }\).

Lemma

Let \(V\in {\text {Rep}}_{fd}(Y_\hbar ({\mathfrak {g}}))\) and fix \(i\in {{{\textbf {I}}}}\) and \(s\in {\mathbb {C}}\). Then:

  1. (1)

    V is a highest weight module if and only if \(V^{\vartheta }\) is.

  2. (2)

    The \(Y_\hbar ({\mathfrak {g}})\)-module \(L_{\varpi _i}(s)\) satisfies

    $$\begin{aligned} L_{\varpi _i}(s)^{\vartheta }\cong L_{\varpi _i}(s+\hbar \kappa -\hbar d_i) \end{aligned}$$

Proof

Since \(\vartheta _\hbar ^{-1}=\vartheta _{-\hbar }\), to prove Part (1) it suffices to show that \(V^\vartheta \) is a highest weight module if V is. To this end, let us suppose V is a highest weight module with highest weight vector \(v\in V\). Let \(\lambda \in {\mathfrak {h}}^*\) be the \({\mathfrak {g}}\)-weight of v. Since the weight space \(V_\lambda =(V^\vartheta )_\lambda \) is one-dimensional and preserved by each operator \(\vartheta _\hbar (\xi _i(u))\), there is an \({{{\textbf {I}}}}\)-tuple \((\mu _i(u))_{i\in {{{\textbf {I}}}}}\), with \(\mu _i(u)\in 1+u^{-1}{\mathbb {C}}[\![u^{-1}]\!]\) for each i, such that

$$\begin{aligned} \vartheta _\hbar (\xi _i(u)) v=\mu _i(u) v \quad \forall \quad i\in {{{\textbf {I}}}}. \end{aligned}$$

Since \(\vartheta _\hbar \) is an isomorphism, the \(Y_{-\hbar }({\mathfrak {g}})\)-module \(V^\vartheta \) is generated by v. We are thus left to show that \(\vartheta _\hbar (x_i^+(u))v=0\) for all \(i\in {{{\textbf {I}}}}\). This follows from (8.2), for instance, and that \(\vartheta _\hbar (\xi _i(u)) v=\mu _i(u) v \) and \(\vartheta _\hbar (x_{i,0}^+)v=x_{i,0}^+v=0\) for all \(i\in {{{\textbf {I}}}}\).

Consider now Part (2). Since \(L_{\varpi _i}(s)^{\vartheta }\) is a finite-dimensional irreducible \(Y_{-\hbar }({\mathfrak {g}})\)-module, there is an \({{{\textbf {I}}}}\)-tuple of monic polynomials \(\underline{P}=(P_i(u))_{i\in {{{\textbf {I}}}}}\) such that \(L(\underline{P})\cong L_{\varpi _i}(s)^{\vartheta }\). Letting \(v\in L_{\varpi _i}(s)^{\vartheta }\) be a highest weight vector, we have \(v\in L_{\varpi _i}(s)^{\vartheta }_{\lambda }\) with \(\lambda =\sum _{j\in {{{\textbf {I}}}}} \deg P_j(u)\varpi _j\). On the other hand, the proof of Part (1) shows that v is a highest weight vector for \(L_{\varpi _i}(s)\), and therefore has weight \(\varpi _i\). It follows that \(\deg P_j(u)=\delta _{ij}\), and thus that \(L_{\varpi _i}(s)^{\vartheta }\cong L_{\varpi _i}(b)\) for some \(b\in {\mathbb {C}}\). Moreover, since

$$\begin{aligned} \vartheta _h(\xi _i(u))v=\frac{u-b-\hbar d_i}{u-b}=1-\hbar d_i\sum _{r\ge 0} b^r u^{-r-1}, \end{aligned}$$

the value of b is determined by \(\vartheta _h(\xi _{i1})v=d_i bv\). Since \(\vartheta _h(\xi _{i1})=\xi _{i1}+\hbar \nu _i\), \(\xi _{i1} v=d_i sv\) and \(\nu _i v=d_i \kappa - d_i^2\), we can conclude that \(b=s+\hbar \kappa -\hbar d_i\). \(\square \)

A.4 With the above machinery at our disposal, we are now prepared to prove the main result of this appendix.

Proposition

For each \(i,j\in {{{\textbf {I}}}}\) and diagram automorphism \(\omega \) of \({\mathfrak {g}}\), one has

$$\begin{aligned} {\textsf{d}}_{ij}(u)={\textsf{d}}_{\omega (i)\omega (j)}(u)\quad \text { and }\quad {\textsf{d}}_{ji}(u+\hbar d_i)={\textsf{d}}_{ij}(u+\hbar d_j). \end{aligned}$$

Proof

Recall from Sect. 2.6 that any diagram automorphism \(\omega \) defines an automorphism of \(Y_\hbar ({\mathfrak {g}})\), which is readily seen to be a homomorphism of coalgebras (see §2.9). As \(\omega \) comutes with the shift automorphism \(\tau _a\) for each \(a\in {\mathbb {C}}\), it follows that \((\omega \otimes \omega ){\mathcal {R}}(u)\) satisfies the defining relations (A.1) and (A.2) of \({\mathcal {R}}(u)\), and so coincides with it by uniqueness. The first equality of the proposition now follows readily from the definition of \({\textsf{d}}_{ij}(u)\) (see Sects. 7.5 and 7.8) and the identification

$$\begin{aligned} (L_{\varpi _i}\otimes L_{\varpi _j}(s))^\omega \cong L_{\varpi _i}^\omega \otimes L_{\varpi _j}(s)^\omega \cong L_{\varpi _{\omega (i)}}\otimes L_{\varpi _{\omega (j)}}(s). \end{aligned}$$

Let us now turn to the second identity of the proposition. To make the dependencies on \(\hbar \) clear, let us write \({\textsf{R}}_{L_{\varpi _j},L_{\varpi _i}}^\hbar (u)\) for the normalized R-matrix \({\textsf{R}}_{L_{\varpi _j},L_{\varpi _i}}(u)\) of \(Y_\hbar ({\mathfrak {g}})\) defined in Sects. 7.5 and \({\textsf{d}}_{ji}^\hbar (u)\) for its denominator. It follows from the second identity of (A.3) and Lemmas A.1 and A.3 that one has the equality of normalized R-matrices

$$\begin{aligned} {\textsf{R}}_{L_{\varpi _j},L_{\varpi _i}}^{-\hbar }(u+\hbar d_i-\hbar d_j)= (1\,2)\circ {\textsf{R}}_{L_{\varpi _i},L_{\varpi _j}}^{\hbar }(-u) \circ (1\,2), \end{aligned}$$

and therefore \({\textsf{d}}_{ji}^{-\hbar }(u+\hbar d_i-\hbar d_j)=(-1)^{\deg {\textsf{d}}_{ij}^\hbar }{\textsf{d}}_{ij}^\hbar (-u)\). The desired equality now follows from Theorem 5.2 and Part (1) of Proposition 7.7, which give

$$\begin{aligned} {\textsf{Z}}({\textsf{d}}_{ji}^\hbar (u))\subset \sigma _i(L_{\varpi _j})+\hbar d_i\subset \frac{\hbar }{2}{\mathbb {Z}}\end{aligned}$$

and hence \({\textsf{d}}_{ji}^{-\hbar }(u)=(-1)^{\deg {\textsf{d}}_{ij}^\hbar }{\textsf{d}}_{ji}^{\hbar }(-u)\). \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, S., Wendlandt, C. Poles of finite-dimensional representations of Yangians. Sel. Math. New Ser. 29, 13 (2023). https://doi.org/10.1007/s00029-022-00813-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00813-y

Mathematics Subject Classification

Navigation