Skip to main content
Log in

Studies on a Three-Field Lattice System: N-Fold Darboux Transformation, Conservation Laws and Analytic Solutions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Researches on the nonlinear lattice equations are active, with the applications in nonlinear optics, condensed matter physics, plasma physics, etc. What we study in this paper is a three-field lattice system, which can be reduced to a modified Toda lattice system and a coupled lattice system. Based on a known Lax pair, we present an N-fold Darboux matrix, and then construct an N-fold Darboux transformation for that system, where N is a positive integer. The first three conservation laws of that system are determined via the Lax pair. Utilizing that N-fold Darboux transformation with \(N=1\) and 2, we obtain the one-fold solutions and two-fold solutions of that system. Those solutions can be used to describe the discrete solitons. Via the one-fold solutions, we present a combination of the kink-shaped discrete one soliton and bell-shaped discrete one soliton. Amplitude, shape and velocity of that combination remain unchanged during the propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availibility

This paper has no associated data.

Notes

  1. Investigations on certain nonlinear evolution equations have been shown, e.g., in Refs. [4,5,6].

  2. We use Mathematica for the work in this paper.

References

  1. Jürgensen, M., Rechtsman, M.C.: Chern number governs soliton motion in nonlinear thouless pumps. Phys. Rev. Lett. 128, 113901 (2022)

    Article  Google Scholar 

  2. Jezequel, L., Delplace, P.: Nonlinear edge modes from topological one-dimensional lattices. Phys. Rev. B 105, 035410 (2022)

    Article  Google Scholar 

  3. Jung, P.S., Pyrialakos, G.G., Wu, F.O., Parto, M., Khajavikhan, M., Krolikowski, W., Christodoulides, D.N.: Thermal control of the topological edge flow in nonlinear photonic lattices. Nat. Commun. 13, 4393 (2022)

    Article  Google Scholar 

  4. Chentouf, B.: Qualitative analysis of the dynamic for the nonlinear Korteweg-de Vries equation with a boundary memory. Qual. Theory Dyn. Syst. 20, 36 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tanwar, D.V., Ray, A.K., Chauhan, A.: Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation. Qual. Theory Dyn. Syst. 21, 24 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gao, X.Y., Guo, Y.J., Shan, W.R.: Symbolically computing the shallow water via a (2+1)-dimensional generalized modified dispersive water-wave system: similarity reductions, scaling and hetero-Bäcklund transformations. Qual. Theory Dyn. Syst. 22, 17 (2023)

  7. Pickering, A., Zhao, H.Q., Zhu, Z.N.: On the continuum limit for a semidiscrete Hirota equation. Proc. R. Soc. A. 472, 20160628 (2016)

  8. Hennig, D., Tsironis, G.P.: Wave transmission in nonlinear lattices. Phys. Rep. 307, 333 (1999)

    Article  MathSciNet  Google Scholar 

  9. Vakhnenko, O.O.: Integrable nonlinear triplet lattice system with the combined inter-mode couplings. Eur. Phys. J. Plus 135, 769 (2020)

    Article  Google Scholar 

  10. Doi, Y., Yoshimura, K.: Construction of nonlinear lattice with potential symmetry for smooth propagation of discrete breather. Nonlinearity 33, 5142 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hennig, D., Karachalios, N.I.: Dynamics of nonlocal and local discrete Ginzburg-Landau equations: global attractors and their congruence. Nonlinear Anal. 215, 112647 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shige, S., Miyasaka, K., Shi, W., Soga, Y., Sato, M., Sievers, A.J.: Experimentally observed evolution between dynamic patterns and intrinsic localized modes in a driven nonlinear electrical cyclic lattice. EPL 121, 30003 (2018)

    Article  Google Scholar 

  13. Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431 (1967)

    Article  Google Scholar 

  14. Toda, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Jpn. 23, 501 (1967)

    Article  Google Scholar 

  15. Chen, X.M., Hu, X.B., Müller-Hoissen, F.: Non-isospectral extension of the Volterra lattice hierarchy, and Hankel determinants. Nonlinearity 31, 4393 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yin, H.M., Pan, Q., Chow, K.W.: The Fermi-Pasta-Ulam-Tsingou recurrence for discrete systems: cascading mechanism and machine learning for the Ablowitz-Ladik equation. Commun. Nonlinear Sci. Numer. Simul. 114, 106664 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wen, X.Y., Yan, Z.Y., Zhang, G.Q.: Nonlinear self-dual network equations: modulation instability, interactions of higher-order discrete vector rational solitons and dynamical behaviours. Proc. R. Soc. A 476, 20200512 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Parker, R., Kevrekidis, P.G., Aceves, A.: Stationary multi-kinks in the discrete sine-Gordon equation. Nonlinearity 35, 1036 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Scott, A.C.: Davydov solitons in polypeptides. Philos. Trans. R. Soc. London Ser. A, Math. Phys Sci. 315, 423 (1985)

    MathSciNet  Google Scholar 

  20. Xu, X.X.: Darboux transformation and explicit solutions for a 3-field integrable lattice system with three arbitrary constants. Int. J. Mod. Phys. B 25, 2609 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xu, X.X., Yang, H.X., Sun, Y.P.: Darboux transformation of the modified Toda lattice equation. Mod. Phys. Lett. B 20, 641 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xu, X.X.: Darboux transformation of a coupled lattice soliton equation. Phys. Lett. A 362, 205 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ma, W.X.: A Darboux transformation for the Volterra lattice equation. Anal. Math. Phys. 9, 1711 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws, \(N\)-fold Darboux transformation and explicit exact solutions. Chaos Solitons Fract. 164, 112460 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vakhnenko, O.O.: Nonlinear integrable dynamics of coupled vibrational and intra-site excitations on a regular one-dimensional lattice. Phys. Lett. A 405, 127431 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Feng, B.F., Ling, L.M.: Darboux transformation and solitonic solution to the coupled complex short pulse equation. Phys. D 437, 133332 (2022)

  27. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation, degenerate and bound-state solitons for a Laksmanan-Porsezian-Daniel equation. Chaos Solitons Fract. 162, 112399 (2022)

  28. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for an \(M\)-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chaos Solitons Fract. 156, 111719 (2022)

    Article  MATH  Google Scholar 

  29. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: \(N\)-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: \(N\)-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material. Nonlinear Dyn. 111, 2641 (2023)

  31. Mbusi, S.O., Muatjetjeja, B., Adem, A.R.: On the exact solutions and conservation laws of a generalized (1+2)-dimensional Jaulent-Miodek equation with a power law nonlinearity. Int. J. Nonlinear Anal. Appl. 13, 1721 (2022)

    Google Scholar 

  32. Kumar, S., Gupta, R.K., Kumari, P.: A new Painlevé integrable Broer-Kaup system: symmetry analysis, analytic solutions and conservation laws. Int. J. Numer. Method H. 31, 3711 (2021)

  33. Kumari, P., Gupta, R.K., Kumar, S.: The time fractional \(D(m, n)\) system: invariant analysis, explicit solution, conservation laws and optical soliton. Wave. Random Complex 32, 1322 (2022)

  34. Adem, A.R.: Symbolic computation on exact solutions of a coupled Kadomtsev-Petviashvili equation: lie symmetry analysis and extended tanh method. Comput. Math. Appl. 74, 1897 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132,108094 (2022)

  36. Gao, X.Y., Guo, Y.J., Shan, W.R.: Oceanic shallow-water symbolic computation on a (2+1)-dimensional generalized dispersive long-wave system. Phys. Lett. A 457, 128552 (2023)

  37. Kumari, P., Gupta, R.K., Kumar, S.: Non-auto-Bäcklund transformation and novel abundant explicit exact solutions of the variable coefficients Burger equation. Chaos Solitons Fract. 145, 110775 (2021)

    Article  MATH  Google Scholar 

  38. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417 (2022)

    Article  Google Scholar 

  39. Gao, X.Y., Guo, Y.J., Shan, W.R.: Letter to the Editor on a (2+1)-dimensional variable-coefficient Sawada-Kotera system in plasma physics and fluid dynamics. Results Phys. 44, 106099 (2023)

  40. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Considering the shallow water of a wide channel or an open sea through a generalized (2+1)-dimensional dispersive long-wave system. Qual. Theory Dyn. Syst. 21, 104 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

  43. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

    Article  MATH  Google Scholar 

  44. Gao, X.Y., Guo, Y.J., Shan, W.R., Du, Z., Chen, Y.Q.: Magnetooptic studies on a ferromagnetic material via an extended (3+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. Qual. Theory Dyn. Syst. 21, 153 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhou, T.Y., Tian, B., Zhang, C.R., Liu, S.H.: Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. Eur. Phys. J. Plus 137, 912 (2022)

  46. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 77, 2818 (2022)

  47. Liu, F.Y., Gao, Y.T., Yu, X.: Rogue-wave, rational and semi-rational solutions for a generalized (3+1)-dimensional Yu-Toda-Sasa-Fukayama equation in a two-layer fluid. Nonlinear Dyn. 111, 3713 (2023)

  48. Yu, X., Sun, Z.Y.: Parabola solitons for the nonautonomous KP equation in fluids and plasmas. Ann. Phys.-New York 367, 251 (2016)

  49. Yu, X., Sun, Z.Y.: Unconventional characteristic line for the nonautonomous KP equation. Appl. Math. Lett. 100, 106047 (2020)

  50. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599 (2022)

    Article  Google Scholar 

  51. Cheng, C.D., Tian, B., Ma, Y.X., Zhou, T.Y., Shen, Y.: Pfaffian, breather and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics. Phys. Fluids 34, 115132 (2022)

  52. Moretlo, T.S., Adem, A.R., Muatjetjeja, B.: A generalized (1+2)-dimensional Bogoyavlenskii-Kadomtsev-Petviashvili (BKP) equation: Multiple exp-function algorithm; conservation laws; similarity solutions. Commun. Nonlinear Sci. Numer. Simul. 106, 106072 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mbusi, S.O., Muatjetjeja, B., Adem, A.R.: Lagrangian formulation, conservation laws, travelling wave solutions: a generalized Benney-Luke equation. Mathematics 9, 1480 (2021)

    Article  Google Scholar 

  54. Adem, A.R.: On the solutions and conservation laws of a two-dimensional Korteweg de Vries model: multiple exp-function method. J. Appl. Anal. 24, 27 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang, D.Y., Tian, B., Hu, C.C., Zhou, T.Y.: The generalized Darboux transformation and higher-order rogue waves for a coupled nonlinear Schrödinger system with the four-wave mixing terms in a birefringent fiber. Eur. Phys. J. Plus 137, 1213 (2022)

  56. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Hu, L., Li, L.Q.: Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation. Wave Motion 114, 103036 (2022)

  57. Wu, X.H., Gao, Y.T., Yu, X., Liu, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. 111, 5641 (2023)

  58. Yang, D.Y., Tian, B., Hu, C.C., Liu, S.H., Shan, W.R., Jiang, Y.: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber. Wave. Random Complex (2023). https://doi.org/10.1080/17455030.2021.1983237

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the BUPT Excellent Ph.D. Students Foundation under Grant No. CX2022156, by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05) and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Shen or Bo Tian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Tian, B., Yang, DY. et al. Studies on a Three-Field Lattice System: N-Fold Darboux Transformation, Conservation Laws and Analytic Solutions. Qual. Theory Dyn. Syst. 22, 74 (2023). https://doi.org/10.1007/s12346-022-00730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00730-7

Keywords

Mathematics Subject Classification

Navigation