Skip to main content
Log in

Lump Solution, Breather Soliton and More Soliton Solutions for a (2+1)-Dimensional Generalized Benjamin–Ono Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Our work is to discuss some new exact solutions of the (2+1)-dimensional generalized Benjamin–Ono (gBO) equation, which describes small amplitude long waves on the surface of shallow water. After careful consideration, lump, breather soliton and new solitons solutions of gBO equation are gained by using the Hirota bilinear method, the test function and the idea of the homogeneous balance, which have not been studied yet. By improving the expression of the test function, the quadratic function with two squares is increased to the quadratic function with three squares, and various lump solutions are obtained. Combining trigonometric function with hyperbolic function, breather soliton is derived. Obviously, sometimes the test function form of tanh–coth and tan–cot methods are so simple that it can’t get the desired result. Utilizing the improved tanh–coth and tan–cot methods, whose solutions depend on the parameter n, we can get more soliton solutions. Finally, by determining different parameters, one can draw the three-dimensional plots and density plots at different times. By observing these figures, we analyze the dynamic behavior of (2+1)-dimensional gBO equation in detail. These results can help us to understand nonlinear systems better.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Liu, B., Zhang, X.E., Wang, B., Lü, X.: Rogue waves based on the coupled nonlinear Schrödinger option pricing model with external potential. Mod. Phys. Lett. B 36(15), 2250057 (2022)

    Google Scholar 

  2. Yin, M.Z., Zhu, Q.W., Lü, X.: Parameter estimation of the incubation period of COVID-19 based on the doubly interval-censored data model. Nonlinear Dyn. 106(2), 1347–1358 (2021)

    Google Scholar 

  3. Lü, X., Hui, H.W., Liu, F.F., Bai, Y.L.: Stability and optimal control strategies for a novel epidemic model of COVID-19. Nonlinear Dyn. 106(2), 1491–1507 (2021)

    Google Scholar 

  4. Manakov, S.V., Zakharov, V.E., Bordag, L.A., Its, A.R., Matveev, V.B.: Two-dimensional solitons of the Kadomtsev–Petviashvili equation and their interaction. Phys. Lett. A 63(3), 205–206 (1977)

    Google Scholar 

  5. Akhmediev, N.N., Ankiewicz, A.: Solitons, Nonlinear Pulses and Beams. Springer, Berlin (1997)

    MATH  Google Scholar 

  6. Ma, W.X.: Integrable nonlocal nonlinear Schrödinger equations associated with so(3, R). Proc. Am. Math. Soc. Ser. B 9(01), 1–11 (2022)

    Google Scholar 

  7. Ma, W.X.: Reduced non-local integrable nls hierarchies by pairs of local and non-local constraints. Int. J. Appl. Comput. Math 8(206), 1–17 (2022)

    MathSciNet  MATH  Google Scholar 

  8. Ma, W.X., Huang, Y.H., Wang, F.D.: Inverse scattering transforms for non-local reverse-space matrix non-linear Schrödinger equations. Eur. J. Appl. Math. 33(6), 1062–1082 (2022)

    MATH  Google Scholar 

  9. Satsuma, J., Ablowitz, M.J.: Two-dimensional lumps in nonlinear dispersive systems. J. Math. Phys. 20(7), 1496–1503 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Zhao, Z.L., He, L.C.: M-lump and hybrid solutions of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation. Appl. Math. Lett. 111, 106612 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Ali, K.K., Yilmazer, R.: M-lump solutions and interactions phenomena for the (2+1)-dimensional KdV equation with constant and time-dependent coefficients. Chin. J. Phys. 77, 2189–2200 (2022)

    MathSciNet  Google Scholar 

  12. Ma, H.C., Cheng, Q.X., Deng, A.P.: Solitons, breathers, and lump solutions to the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation. Complexity 2021, 7264345 (2021)

    Google Scholar 

  13. Ma, H.C., Yue, S.P., Deng, A.P.: Resonance Y-shape solitons and mixed solutions for a (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Nonlinear Dyn. 108, 505–519 (2022)

    Google Scholar 

  14. Ma, H.C., Gao, Y.D., Deng, A.P.: Fission and fusion solutions of the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation: case of fluid mechanics and plasma physics. Nonlinear Dyn. 108, 4123–4137 (2022)

    Google Scholar 

  15. Zhao, Z.L., He, L.C.: Resonance Y-type soliton and hybrid solutions of a (2+1)-dimensional asymmetrical Nizhnik–Novikov–Veselov equation. Appl. Math. Lett. 122, 107497 (2021)

    MathSciNet  MATH  Google Scholar 

  16. Zhao, Z.L., He, L.C.: Nonlinear superposition between lump waves and other waves of the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. Nonlinear Dyn. 108(1), 555–568 (2022)

    Google Scholar 

  17. Ma, H.C., Yue, S.P., Deng, A.P.: Nonlinear superposition between lump and other waves of the (2+1)-dimensional generalized Caudrey–Dodd–Gibbon–Kotera–Sawada equation in fluid dynamics. Nonlinear Dyn. (2022) https://doi.org/10.1007/s11071-022-07508-1

  18. Wang, C.J., Fang, H., Tang, X.X.: State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation. Nonlinear Dyn. 995(4), 2943–2961 (2019)

    MATH  Google Scholar 

  19. Wang, C.J.: Spatiotemporal deformation of lump solution to (2+1)-dimensional KdV equation. Nonlinear Dyn. 84(2), 697–702 (2016)

    MathSciNet  Google Scholar 

  20. Wang, C.J., Fang, H.: General high-order localized waves to the Bogoyavlenskii–Kadomtsev–Petviashvili equation. Nonlinear Dyn. 100(1), 583–599 (2020)

    MATH  Google Scholar 

  21. Ohta, Y., Yang, J.K.: General high-order rogue waves and their dynamics in the nonlinear Schrödinger equation. Proc. R. Soc. A 468(2142), 1716–1740 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Ma, W.X.: Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379(36), 1975–1978 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Guo, Y.F., Dai, Z.D., Guo, C.X.: Lump solutions and interaction solutions for (2+1)-dimensional KPI equation. Front. Math. China 17, 875–886 (2022)

    MathSciNet  MATH  Google Scholar 

  24. Guo, Y.F., Guo, C.X., Li, D.L.: The lump solutions for the (2+1)-dimensional Nizhnik–Novikov–Veselov equations. Appl. Math. Lett 121, 107427 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Chen, W., Chen, H.L., Dai, Z.D.: Rational homoclinic solution and rogue wave solution for the coupled long-wave-short-wave system. Pramana 86, 713–717 (2016)

    Google Scholar 

  26. Lü, X., Ma, W.X.: Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation. Nonlinear Dyn. 85, 1217–1222 (2016)

    MathSciNet  MATH  Google Scholar 

  27. He, B., Meng, Q.: Lump and interaction solutions for a generalized (3+1)-dimensional propagation model of nonlinear waves in fluid dynamics. Int. J. Comput. Math. 98(3), 592–607 (2021)

    MathSciNet  MATH  Google Scholar 

  28. Younas, U., Sulaiman, T.A., Ren, J.L., Yusuf, A.: Lump interaction phenomena to the nonlinear ill-posed Boussinesq dynamical wave equation. J. Geom. Phys. 178, 104586 (2022)

    MathSciNet  MATH  Google Scholar 

  29. Ma, H.C., Yue, S.P., Deng, A.P.: Lump and interaction solutions for a (2+1)-dimensional combined pKP-BKP equation in fluids. Mod. Phys. Lett. B 36(13), 2250069 (2022)

    MathSciNet  Google Scholar 

  30. Abdou, M.A., Abulwafa, E.M.: The three-wave method and its applications. Nonlinear Sci. Lett. A 1(4), 373–378 (2010)

    Google Scholar 

  31. Guo, Y.F., Li, D.L., Wang, J.X.: The new exact solutions of the Fifth-Order Sawada–Kotera equation using three wave method. Appl. Math. Lett. 94, 232–237 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Chen, S.J., Lü, X.: Lump and lump-multi-kink solutions in the (3+1)-dimensions. Commun. Nonlinear Sci. Numer. Simul. 109, 106103 (2022)

    MathSciNet  Google Scholar 

  33. Ma, H.C., Gao, Y.D., Deng, A.P.: Dynamical analysis of diversity lump solutions to the (2+1)-dimensional dissipative Ablowitz–Kaup–Newell–Segure equation. Commun. Theor. Phys. (2022). https://doi.org/10.1088/1572-9494/ac633f

    Article  Google Scholar 

  34. Rizvi, S.T.R., Seadawy, A.R., Ali, K., Ashraf, M.A., Althubiti, S.: Multiple lump and interaction solutions for fifth-order variable coefficient nonlinear-Schrödinger dynamical equation. Opt. Quantum Electron. 54(154), 1–23 (2022)

    Google Scholar 

  35. Ma, H.C., Wu, H.F., Ma, W.X., Deng, A.P.: Localized interaction solutions of the (2+1)-dimensional Ito equation. Opt. Quantum Electron. 53(303), 1–16 (2021)

    Google Scholar 

  36. Wang, C.J., Dai, Z.D., Liu, C.F.: Interaction between kink solitary wave and rogue wave for (2+1)-dimensional Burgers equation. Mediterr. J. Math. 13(3), 1087–1098 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Yin, Y.H., Lü, X., Ma, W.X.: Bäcklund transformation, exact solutions and diverse interaction phenomena to a (3+1)-dimensional nonlinear evolution equation. Nonlinear Dyn. 108(4), 4181–4194 (2022)

    Google Scholar 

  38. Wazwaz, A.M.: New (3+1)-dimensional Date–Jimbo–Kashiwara–Miwa equations with constant and time-dependent coefficients: Painlevé integrability. Phys. Lett. A 384(32), 126787 (2020)

    MathSciNet  MATH  Google Scholar 

  39. Ali, M.R., Sadat, R.: Construction of lump and optical solitons solutions for (3+1) model for the propagation of nonlinear dispersive waves in inhomogeneous media. Opt. Quantum Electron. 53(5), 1–13 (2021)

    Google Scholar 

  40. Hu, C.C., Tian, B., Zhao, X.: Rogue and lump waves for the (3+1)-dimensional Yu–Toda–Sasa–Fukuyama equation in a liquid or lattice. Int. J. Mod. Phys. B 35(31), 2150320 (2021)

    Google Scholar 

  41. Chen, S.S., Tian, B., Zhang, C.R.: Odd-fold Darboux transformation, breather, rogue-wave and semirational solutions on the periodic background for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma. Ann. Phys. 534(1), 2100231 (2022)

    Google Scholar 

  42. Zhao, Z.L., He, L.C.: Lie symmetry, nonlocal symmetry analysis, and interaction of solutions of a (2+1)-dimensional KdV-mKdV equation. Theor. Math. Phys. 206(2), 142–162 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Chen, S.J., Lü, X., Li, M.G., Wang, F.: Derivation and simulation of the M-lump solutions to two (2+1)-dimensional nonlinear equations. Phys. Scr. 96(9), 095201 (2021)

    Google Scholar 

  44. Ma, W.X., Zhang, Y., Tang, Y.N.: Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. East Asian J. Appl. Math. 10(4), 732–745 (2020)

    MathSciNet  MATH  Google Scholar 

  45. Chen, S.J., Lü, X.: Observation of resonant solitons and associated integrable properties for nonlinear waves. Chaos Solitons Fract. 163, 112543 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Rao, J.G., Liu, Y.B., Qian, C., He, J.S.: Rogue waves and hybrid solutions of the Boussinesq equation. Z. Naturforsch. A. 72(4), 307–314 (2017)

    Google Scholar 

  47. Benjamin, T.B.: Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 29(3), 559–592 (1967)

    MATH  Google Scholar 

  48. Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan. 39(4), 1082–1091 (1975)

    MathSciNet  MATH  Google Scholar 

  49. Daripa, P.: Some useful filtering techniques for illposed problems. J. Comput. Appl. Math. 100(2), 161–171 (1998)

    MathSciNet  MATH  Google Scholar 

  50. Ursell, F.: The long-wave paradox in the theory of gravity waves. Proc. Cambridge Philos. Soc. 49, 685–694 (1953)

    MathSciNet  MATH  Google Scholar 

  51. Liu, W.J.: New solitary wave solution for the Boussinesq wave equation using the semi-inverse method and the exp-function method. Z. Naturforschung A 64(11), 709–712 (2009)

    Google Scholar 

  52. Esfahani, A.: Remarks on solitary waves of the generalized two dimensional Benjamin-Ono equation. Appl. Math. Comput. 218, 308–323 (2011)

    MathSciNet  MATH  Google Scholar 

  53. Zhao, Z., He, L., Gao, Y.: Rogue wave and multiple lump solutions of the (2+1)-dimensional Benjamin–Ono equation in fluid mechanics. Complexity 2019, 8249635 (2019)

    MATH  Google Scholar 

  54. Case, K.M.: The Benjamin-Ono equation: a remarkable dynamical system. Ann. Nucl. Energy 7(4–5), 273–277 (1980)

    MathSciNet  Google Scholar 

  55. Tan, W., Dai, Z.D.: Spatiotemporal dynamics of lump solution to the (1+1)-dimensional Benjamin–Ono equation. Nonlinear Dyn. 89(4), 2723–2728 (2017)

    MathSciNet  Google Scholar 

  56. Ma, W.X., Li, C.X., He, J.S.: A second Wronskian formulation of the Boussinesq equation. Nonlinear Anal.TMA 70(12), 4245–4258 (2009)

    MathSciNet  MATH  Google Scholar 

  57. Hirota, R.: The direct method in soliton theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  58. Hossen, M.B., Roshid, H.O., Ali, M.Z.: Multi-soliton, breathers, lumps and interaction solution to the (2+1)-dimensional asymmetric Nizhnik–Novikov–Veselov equation. Heliyon 5(10), e02548 (2019)

    Google Scholar 

  59. Feng, Y.Y., Bilige, S.: Multi-breather, multi-lump and hybrid solutions to a novel KP-like equation. Nonlinear Dyn. 106(1), 879–890 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongcai Ma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Yue, S., Gao, Y. et al. Lump Solution, Breather Soliton and More Soliton Solutions for a (2+1)-Dimensional Generalized Benjamin–Ono Equation. Qual. Theory Dyn. Syst. 22, 72 (2023). https://doi.org/10.1007/s12346-023-00769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00769-0

Keywords

Navigation