Skip to main content
Log in

Response Solutions of Degenerate Quasi-Periodic Systems Under Small Perturbations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper considers a class of n-dimensional degenerate systems with a quasi-periodic perturbation whose frequency is a diophantine vector. Assume that the unperturbed system has the origin as an equilibrium, which is degenerate at one direction. By KAM iteration, we prove that the perturbed quasi-periodic system has a small response solution for sufficiently small perturbations. The proof is based on the idea of reducibility and the KAM technique of introducing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avila, A., Fayad, B., Krikorian, R.: A KAM schem for SL(2, R) cocycles with Liouvillean frequencies. Geom. Funct. Anal. 21(5), 1001–1019 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheng, H., Rafael, W., De La LLave, R., Wang, F.: Response solutions to the quasi-periodically forced systems with degenerate equilibrium: a simple proof of a result of W. Si and J. Si. and extensions. Nonlinearity 34(1), 372–393 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Corsi, L., Gentile, G.: Oscillator synchronisation under arbitrary quasi-periodic forcing. Commuun. Math. Phys. 316, 489–529 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Corsi, L., Gentile, G.: Resonant motions in the presence of degeneracies for quasi-periodically perturbed systems. Ergod. Thoery Dyn. Syst. 35(4), 1079–1140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Corsi, L., Gentile, G.: Resonant tori of arbitrary codimension for quasi-periodically forced systems. Nonlinear Differ. Equ. Appl. 24(3), 3–21 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eliasson, L.H.: Almost reducibility of linear quasi-periodic systems. Proc. Sympos. Pure Math. 69, 679–705 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Graff, S.M.: On the conservation of hyperbolic invariant tori for Hamiltonian systems. J. Differ. Equ. 15, 1–69 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  8. Her, H., You, J.: Full measure reducibility for generic one-parameter family of quasi-periodic linear systems. J. Dynam. Differ. Equ. 20, 831–866 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hu, S.-Q., Liu, B.: Completely degenerate lower-dimensional invariant tori for Hamiltonian system. J. Differ. Equ. 266(11), 7459–7480 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hou, X., You, J.: Almost reducibility and non-perturbative reducibility of quasi-periodic linear systems. Invent. Math. 190(1), 209–260 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jorba, A., Simó, C.: On the reducibility of linear differential equations with quasi-periodic coefficients. J. Differ. Equ. 98, 111–124 (1992)

    Article  MATH  Google Scholar 

  12. Jorba, A., Simó, C.: On quasi-periodic perturbations of elliptic equilibrium points. SIAM J. Math. Anal. 27(6), 1704–1737 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Johnson, R.A., Sell, G.R.: Smoothness of spectral subbundles and reducibility of quasi-periodic linear differential systems. J. Differ. Equ. 41, 262–288 (1981)

    Article  MATH  Google Scholar 

  14. Lou, Z., Geng, J.: Quasi-periodic response solutions in forced reversible systems with Liouvillean frequencies. J. Differ. Equ. 263, 3894–7480 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Si, W., Si, J.: Construction of response solutions for two calsses of quasi-periodically forced four-dimensional nonlinear systems with degenerate equilibrium point under small perturbations. J. Differ. Equ. 262(9), 4771–4822 (2017)

    Article  MATH  Google Scholar 

  16. Si, W., Si, J.: Response solutions and quasi- periodic degenerate bifurcations for quasi-periodic forcing systems. Nonlinearity 31(6), 2361–2418 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, J., You, J., Zhou, Q.: Response solutions for quasi-periodically forced harmonic oscillators. Trans. Am. Math. Soc. 369(6), 4251–4274 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xu, J.: On quasi-periodic perturbations of hyperbolic-type degenerate equilibrium point of a class of planar systems. Discret. Contin. Dyn. Syst. A 33(6), 2593–2619 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, J., Jiang, S.: Reducibility for a class of nonlinear quasi-periodic differential equations with degenerate equilibrium point under small perturbation. Ergod. Theory Dyn. Syst. 31(2), 599–611 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xu, J., Li, Q., Wang, J.: Response solutions of 3-dimensional degenerate quasi-periodic systems with small parameter. J. Differ. Equ. 293, 188–225 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxiang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Some Propeties of Functions

Lemma 4.1

(Lemma 5.1 [20]) Suppose \(P(z,\theta )=\sum _{\vert \beta \vert \ge m}P_{\beta }(\theta )z^{\beta }\) is analytic on \(D_{r,s}\). Let \(\Vert P\Vert _{D_{r,s}}\le T\). If \(\varepsilon \le \frac{r}{2}\), then \(\Vert P\Vert _{D_{\varepsilon ,s}}\lessdot T(\frac{\varepsilon }{r})^{m}\).

1.2 Estimate for Implicit Function

Lemma 4.2

Consider

$$\begin{aligned} N(\mu )=l(\xi )-\lambda +{\tilde{N}}(\mu ),\ \mu =(\xi ,\lambda )\in M\subset \mathbb {C}^{2}, \end{aligned}$$

where \(M=B(\Gamma _{-}, 3\varepsilon _{-})\cap (I_{\gamma _{-}/2+\varepsilon _{-}}\times \mathbb {C}).\) Let \({\tilde{N}}\) be real analytic and

$$\begin{aligned} \Vert \partial _{\mu }{\tilde{N}}\Vert _{M}=\Vert {\tilde{N}}_{\xi }\Vert _{M}+\Vert \tilde{N}_{\lambda }\Vert _{M}\le \frac{1}{2}. \end{aligned}$$

Moreover, \(N(\xi ,\lambda )=0\) defines a real analytic implicit function on M

$$\begin{aligned} \Gamma :\lambda =\lambda (\xi ),\ \xi \in I_{\gamma _{-}/2} \end{aligned}$$

such that the neighborhood of \(\Gamma \)

$$\begin{aligned} B(\Gamma ,\varepsilon _{-})\subset M, \end{aligned}$$

where \(\varepsilon _{-}, \gamma _{-}\) are the iteration parameters in the last step.

Consider

$$\begin{aligned} N_{+}(\mu )=l(\xi )-\lambda +{\tilde{N}}_{+}(\mu ), \end{aligned}$$

where \({\tilde{N}}_{+}={\tilde{N}}+{\hat{N}}\) with \(\Vert {\hat{N}}\Vert _M\lessdot \varepsilon ^{2}.\)

If \(\varepsilon \le \varepsilon _{-}/4\) and \(\varepsilon \le \gamma /2\), then there exists complex region \(M_{+}\subset M\subset \mathbb {C}^{2}\) satisfing

$$\begin{aligned} dist(M_{+},\partial M)\ge \varepsilon _{-}/4, \end{aligned}$$

and \(N_{+}\) is real analytic on \(M_{+}\). Furthermore, \({\hat{N}}\) satisfies

$$\begin{aligned} \Vert \partial _{\mu }{\hat{N}}\Vert _{M_{+}}\lessdot \varepsilon ^{2}/\varepsilon _{-}. \end{aligned}$$

If \(\Vert \partial _{\mu } {\tilde{N}}_{+}\Vert _{M_{+}}\le \frac{1}{2}\), then \(N_{+}(\xi ,\lambda )=0\) determines a real analytic implicit function on \(M_{+}\)

$$\begin{aligned} \Gamma _{+}:\lambda =\lambda _{+}(\xi ),\ \xi \in I_{\gamma /2} \end{aligned}$$

such that

$$\begin{aligned} \vert \lambda _{+}(\xi )-\lambda (\xi )\vert \le 2\varepsilon ^{2},\ \xi \in I_{\gamma /2},\ B(\Gamma _{+},\varepsilon )\subset M_{+}. \end{aligned}$$

Moreover,

$$\begin{aligned} \vert N_{+}(\mu )\vert \le 8\varepsilon ,\ \mu \in M_+. \end{aligned}$$

Proof

Let \(M_+=B(\Gamma ,3\varepsilon )\cap (I_{\gamma /2+\varepsilon }\times \mathbb {C})\). Since \(\varepsilon \le \varepsilon _{-}/4\) and \(\varepsilon \le \gamma /2\), by \(B(\Gamma ,\varepsilon _{-})\subset M\) it follows easily that \(M_{+}\subset M\) and dist\((M_{+}, \partial {M})\ge \varepsilon _{-}/4\). Using Cauchy’s estimate we have

$$\begin{aligned} \Vert \partial _{\mu }{\hat{N}}\Vert _{M_{+}}\lessdot \varepsilon ^{2}/\varepsilon _{-}. \end{aligned}$$

By \(\Vert \partial _{\mu } {\tilde{N}}_{+}\Vert _{M_{+}}\le \frac{1}{2}\), the equation

$$\begin{aligned} N_{+}(\mu )=l(\xi )-\lambda +{\tilde{N}}_{+}(\mu )=0 \end{aligned}$$

determines implicitly an analytic curve on \(M_{+}\)

$$\begin{aligned} \Gamma _{+}:\lambda =\lambda _{+}(\xi ),\ \xi \in I_{\gamma /2}. \end{aligned}$$

By \(\Vert \partial _{\mu }{\tilde{N}}\Vert _{M}\le \frac{1}{2}\), it follows that

$$\begin{aligned} \vert \lambda _{+}(\xi )-\lambda (\xi )\vert \le 2\varepsilon ^{2},\ \xi \in I_{\gamma /2}. \end{aligned}$$

Thus \(B(\Gamma _{+},\varepsilon )\subset M_{+}.\) Let \(\varepsilon <1/2\). For \((\xi , \lambda )\in M_{+}\), we have

$$\begin{aligned}\vert \lambda -\lambda _{+}(\xi )\vert \le \vert \lambda -\lambda (\xi )\vert +\vert \lambda (\xi )-\lambda _{+}(\xi )\vert \le 4\varepsilon . \end{aligned}$$

Noting that \(\vert N_{+\lambda }\vert \le 2\), for all \(\mu \in M_{+}\) and \(N_{+}(\mu )=0\), for all \(\mu =(\xi , \lambda (\xi ))\), we have

$$\begin{aligned} \vert N_{+}(\mu )\vert \le 8\varepsilon ,\ \mu \in M_+. \end{aligned}$$

Thus Lemma 4.2 is proved. \(\square \)

1.3 Implicit Function Theorem

The following implicit function theorem is given for solving the homological equation.

Lemma 4.3

Suppose that the eigenvalues of \(A_{0}\) have non-zero real parts. Let \(F(\mu ;\theta )\in C^{a}(M\times {\mathbb {T}}_{s})\). Then for sufficiently small \(\varepsilon _{0}\) such that for \(Q(\mu ;\theta )\in C^{a}(M\times {\mathbb {T}}_{s})\) and \(\Vert Q\Vert _{M\times {\mathbb {T}}_{s}}\le c\varepsilon _{0}\), the equation

$$\begin{aligned} \partial _{\omega }W(\mu ;\theta )-A_{0}W(\mu ;\theta )-Q(\mu ;\theta )W(\mu ;\theta )=F(\mu ;\theta ) \end{aligned}$$
(4.1)

has a unique solution \(W(\mu ;\theta )\in C^{a}(M\times {\mathbb {T}}_{s})\) and \(\Vert W\Vert _{M\times {\mathbb {T}}_{s}}\le \tilde{c}\Vert F\Vert _{M\times {\mathbb {T}}_{s}}\), where \(c, \tilde{c}\) are constant.

Proof

\(W(\mu ;\theta )=(w_{1}(\mu ;\theta ), \cdots , w_{n}(\mu ;\theta ))^{T}\in C^{a}(M\times {\mathbb {T}}_{s})\). We define an operator \(T: C^{a}(M\times {\mathbb {T}}_{s})\rightarrow C^{a}(M\times {\mathbb {T}}_{s})\) by

$$\begin{aligned} T(W(\mu ;\theta )):=\partial _{\omega }W(\mu ;\theta )-A_{0}W(\mu ;\theta )=\sum _{k\in {\mathbb {Z}}^{m}}({\textrm{i}}\langle k, \omega \rangle I_{n}-A_{0})W_{k}(\mu )e^{{\textrm{i}}\langle k, \theta \rangle }. \end{aligned}$$

Then the Eq. (4.1) can be written as

$$\begin{aligned} TW(\mu ;\theta )-Q(\mu ;\theta )W(\mu ;\theta )=F(\mu ;\theta ). \end{aligned}$$

For simplicity, let \(A_{0}\) possess a Jordan form

$$\begin{aligned} J_{A_{0}}=\text{ diag }(A_{01},\cdots ,A_{0l}), \end{aligned}$$

where \(A_{0i}\) is at most two-order because the case of higher order is similar. Then \(A_{0i}=\text{ diag }(\zeta _{i},\bar{\zeta _{i}})\), or \(\zeta _{i}\), or \(\zeta _{i}I_{2}\), or \(\zeta _{i}I_{2}+J_{0}\) for \(1\le i\le l\), where \(\vert {\textrm{Re}}(\zeta _{i})\vert \ge b_{0}>0\) and \(J_{0}=\begin{pmatrix} 0 &{}\quad 0 \\ 1 &{} 0 \end{pmatrix}\). By the definition of T, the eigenvalues corresponding to T are \({{\textrm{i}}}\langle k, \omega \rangle +\zeta _{i}\). Noting \(\vert \text {Re}(\zeta _{i})\vert \ge b_{0}\), then we can get T is invertible and \(T^{-1}:C^{a}(M\times {\mathbb {T}}_{s})\rightarrow C^{a}(M\times {\mathbb {T}}_{s})\)

$$\begin{aligned} T^{-1}(W(\mu ;\theta ))=\sum _{k\in {\mathbb {Z}}^{m}}({\textrm{i}}\langle k, \omega \rangle I_{n}-A_{0})^{-1}W_{k}(\mu )e^{{\textrm{i}}\langle k, \theta \rangle }. \end{aligned}$$

One can check that

$$\begin{aligned} \Vert T^{-1}\Vert =\sup _{0\ne W(\mu ;\theta )\in C^{a}(M\times {\mathbb {T}}_{s})}\frac{\Vert T^{-1}(W(\mu ;\theta ))\Vert }{\Vert W(\mu ;\theta )\Vert }\le \sup _{0\ne W(\mu ;\theta )\in C^{a}(M\times {\mathbb {T}}_{s})}\frac{c_{1}\Vert W(\mu ;\theta )\Vert }{\Vert W(\mu ;\theta )\Vert }=c_{1}, \end{aligned}$$

where \(c_{1}=n\times \max \{\frac{1}{b_{0}},\frac{1}{b_{0}^{2}}\}\).

Define \(L: C^{a}(M\times {\mathbb {T}}_{s})\rightarrow C^{a}(M\times {\mathbb {T}}_{s})\) by

$$\begin{aligned} L(W(\mu ;\theta )):=T^{-1}(F(\mu ;\theta )+Q(\mu ;\theta )W(\mu ;\theta )). \end{aligned}$$

Below we prove that L has a fixed point. For any \(W_{1}(\mu ;\theta ), W_{2}(\mu ;\theta )\in C^{a}(M\times {\mathbb {T}}_{s})\),

$$\begin{aligned} \Vert LW_{1}-LW_{2}\Vert{} & {} =\Vert T^{-1}Q(W_{1}-W_{2})\Vert \le \Vert T^{-1}\Vert \Vert Q\Vert \Vert W_{1}-W_{2}\Vert \\{} & {} \le c_{1}c\varepsilon _{0}\Vert W_{1}-W_{2}\Vert \le \frac{1}{2}\Vert W_{1}-W_{2}\Vert . \end{aligned}$$

By Banach fixed point theorem, L has a unique fixed point \(W_{*}\) in \(C^{a}(M\times {\mathbb {T}}_{s})\). Moreover,

$$\begin{aligned} \Vert W_{*}(\mu ;\theta )\Vert{} & {} =\Vert T^{-1}(F(\mu ;\theta )+Q(\mu ;\theta )W_{*}(\mu ;\theta ))\Vert \le \Vert T^{-1}\Vert \Vert F(\mu ;\theta )\\{} & {} \quad +Q(\mu ;\theta )W_{*}(\mu ;\theta )\Vert \le \Vert T^{-1}\Vert (\Vert F(\mu ;\theta )\Vert \\{} & {} \quad +\Vert Q(\mu ;\theta )\Vert \Vert W_{*}(\mu ;\theta )\Vert )\le c_{1}(\Vert F(\mu ;\theta )\Vert +c\varepsilon _{0}\Vert W_{*}(\mu ;\theta )\Vert ), \end{aligned}$$

thus we get that

$$\begin{aligned} \Vert W_{*}(\mu ;\theta )\Vert \le \frac{c_{1}}{1-c_{1}c\varepsilon _{0}}\Vert F(\mu ;\theta )\Vert \le \tilde{c}\Vert F(\mu ;\theta )\Vert , \end{aligned}$$

where \(\tilde{c}=\frac{c_{1}}{1-c_{1}c\varepsilon _{0}}\). Thus Lemma 4.3 is proved. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, S., Xu, J. Response Solutions of Degenerate Quasi-Periodic Systems Under Small Perturbations. Qual. Theory Dyn. Syst. 22, 69 (2023). https://doi.org/10.1007/s12346-023-00770-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00770-7

Keywords

Navigation