Skip to main content
Log in

Existence and Multiplicity of Solutions for a Fractional Schrödinger–Poisson System with Subcritical or Critical Growth

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of positive ground state solutions and infinitely many geometrically distinct solutions for the following fractional Schrödinger–Poisson system

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^s u+V(x)u+\phi u=f(x,u), &{} \text{ in }\ {\mathbb {R}}^3,\\ (-\Delta )^s \phi =u^2, &{} \text{ in }\ {\mathbb {R}}^3, \end{array}\right. } \end{aligned}$$

where \(s\in (\frac{3}{4},1)\) is a fixed constant, f is continuous, superlinear at infinity with subcritical or critical growth and V and f are asymptotically periodic in x. Applying the method of Nehari manifold and Lusternik–Schnirelmann category theory, three existence results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Benci, V., Cerami, G.: The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch. Ration. Mech. Anal. 114, 79–93 (1991)

    MathSciNet  MATH  Google Scholar 

  3. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger–Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Benci, V., Fortunato, G.: Solitary waves of the nonlinear Klein–Gordon equation coupled with the Maxwell equations. Rev. Math. Phys. 14, 409–420 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88, 486–490 (1983)

    MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial. Differ. Equ. 32(7–9), 1245–1260 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Chang, X.: Ground state solutions of asymptotically linear fractional Schrödinger equation. J. Math. Phys. 54, 061504 (2013)

    MathSciNet  MATH  Google Scholar 

  8. D’Aprile, T., Wei, J.: On bound states concentrating on spheres for the Maxwell–Schrödinger equation. SIAM J. Math. Anal. 37, 321–342 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    MathSciNet  MATH  Google Scholar 

  11. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinburgh Sect. A 142(6), 1237–1262 (2012)

    MATH  Google Scholar 

  12. He, X.: Multiplicity and concentration of positive solutions for the Schrödinger–Poisson equations. Z. Angew. Math. Phys. 62, 869–889 (2011)

    MathSciNet  MATH  Google Scholar 

  13. He, X., Zou, W.: Existence and concentration of ground states for Schrödinger–Poisson equations with critical growth. J. Math. Phys. 53, 023702 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Ianni, I., Vaira, G.: On concentration of positive bound states for the Schrödinger–Poisson problem with potentials. Adv. Nonlinear Stud. 8, 573–595 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on \({ R}^N\). Proc. Roy. Soc. Edinburgh Sect. A 129, 787–809 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Jeanjean, L., Tanaka, K.: A positive solution for a nonlinear Schrödinger equation on \({\mathbb{R} }^N\). Indiana Univ. Math. J. 54, 443–464 (2005)

    MathSciNet  MATH  Google Scholar 

  17. Jiang, Y., Zhou, H.: Schrödinger–Poisson system with steep potential well. J. Differ. Equ. 251, 582–608 (2011)

    MATH  Google Scholar 

  18. Jin, T., Yang, Z.: The fractional Schrödinger–Poisson systems with infinitely many solutions. J. Korean Math. Soc. 57(2), 489–506 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Landkof, N.S.: Foundations of Modern Potential Theory, trans. from Russian (Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 180). Springer, Berlin, (1973)

  20. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    MathSciNet  MATH  Google Scholar 

  21. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    MathSciNet  Google Scholar 

  22. Lions, P.: Solutions of Hartree–Fock equations for coulomb systems. Comm. Math. Phys. 109, 33–97 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 1. volume 1, pages 109–145. (1984)

  24. Lions, P.L.: The concentration-compactness principle in the calculus of variations. the locally compact case, part 2. volume 1, pages 223–283. (1984)

  25. Liu, W.: Existence of multi-bump solutions for the fractional Schrödinger–Poisson system. J. Math. Phys. 57, 091502 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Rabinowitz, P. H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. In: CBMS Regional Conference Series in Mathematics Vol. 65 . (American Mathematical Society, Providence, RI, 1986)

  27. Ruiz, D., Vaira, G.: Cluster solutions for the Schrödinger–Poisson-Slater problem around a local minimum of the potential. Rev. Mat. Iberoam. 27, 253–271 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R} }^N\). J. Math. Phys. 54, 031501 (2013)

    MathSciNet  MATH  Google Scholar 

  29. Servadei, R., Valdinoci, E.: The Brezis–Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367, 67–102 (2015)

    MathSciNet  MATH  Google Scholar 

  30. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27, 187–207 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Struwe, M.: Variational methods, 2nd edn. Springer, Berlin Heidelberg (1996)

    MATH  Google Scholar 

  32. Sun, J., Ma, S.: Ground state solutions for some Schrödinger–Poisson systems with periodic potentials. J. Differ. Equ. 260(3), 2119–2149 (2016)

    MATH  Google Scholar 

  33. Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Szulkin, A., Weth, T.: The methods of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of nonconvex analysis ans applications. International Press, Boston (2010)

    MATH  Google Scholar 

  35. Teng, K.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016)

    MATH  Google Scholar 

  36. Wang, J., Tian, L., Xu, J., Zhang, F.: Existence and concentration of positive solutions for semilinear Schrödinger–Poisson systems in \({\mathbb{R} }^3\). Calc. Var. Partial Differ. Equ. 48, 243–273 (2013)

    MATH  Google Scholar 

  37. Willem, M.: Minimax theorems. progress in nonlinear differential equations and their applications, vol. 24. Birkhäuser Boston Inc, Boston, MA (1996)

    Google Scholar 

  38. Wu, X., Wu, K.: Geometrically distinct solutions for quasilinear elliptic equations. Nonlinearity 27, 987–1001 (2014)

    MathSciNet  MATH  Google Scholar 

  39. Yang, Z., Yu, Y.: Existence and concentration of solution for Schrödinger–Poisson system with local potential. Partial Differ. Equ. Appl. 2(4), 47 (2021)

    MATH  Google Scholar 

  40. Yang, Z., Yu, Y., Zhao, F.: The concentration behavior of ground state solutions for a critical fractional Schrödinger–Poisson system. Math. Nachr. 292(8), 1837–1868 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Yang, Z., Yu, Y., Zhao, F.: Concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system involving critical exponent. Commun. Contemp. Math. 21(6), 1850027 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Yang, Z., Zhang, W., Zhao, F.: Existence and concentration results for fractional Schrödinger–Poisson system via penalization method. Electron. J. Differ. Equ. 14, 31 (2021)

    MATH  Google Scholar 

  43. Yang, Z., Zhao, F., Zhao, S.: Existence and multiplicity of normalized solutions for a class of fractional Schrödinger–Poisson equations. Ann. Fenn. Math. 47(2), 777–790 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Yu, Y., Zhao, F., Zhao, L.: The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system. Calc. Var. Partial Differ. Equ. 56, 116 (2017)

    MATH  Google Scholar 

  45. Zhang, H., Xu, J., Zhang, F.: Existence and multiplicity of solutions for superlinear fractional Schrödinger equations in \({\mathbb{R} }^N\). J. Math. Phys. 56, 091502 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Zhang, J., Squassina, M.: Fractional Schrödinger–Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 16(1), 15–30 (2016)

    MathSciNet  MATH  Google Scholar 

  47. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger–Poisson equations with steep well potential. J. Differ. Equ. 255(1), 1–23 (2013)

    MATH  Google Scholar 

  48. Zhao, L., Zhao, F.: Positive solutions for Schrödinger–Poisson equations with a critical exponent. Nonlinear Anal. 70(6), 2150–2164 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the anonymous referee for his/her careful readings of our manuscript and the useful comments. This work is supported by National Natural Science Foundation of China (No.11961081,12261107,12101546) and Yunnan Key Laboratory of Modern Analytical Mathematics and Applications (No. 202202AN210064).

Author information

Authors and Affiliations

Authors

Contributions

GG and CM wrote the main results text, ZY wrote the main introduction text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhipeng Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, G., Mu, C. & Yang, Z. Existence and Multiplicity of Solutions for a Fractional Schrödinger–Poisson System with Subcritical or Critical Growth. Qual. Theory Dyn. Syst. 22, 63 (2023). https://doi.org/10.1007/s12346-023-00756-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00756-5

Keywords

Mathematics Subject Classification

Navigation