Skip to main content
Log in

Exact Controllability of Hilfer Fractional Differential System with Non-instantaneous Impluleses and State Dependent Delay

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we discuss the exact controllability of a fractional order differential system involving Hilfer fractional(HF) derivative, state-dependent delay function and impulsive conditions. To obtain the proposed result, we use the semigroup theory, theory of measure of non-compactness and fixed point technique. Finally, an example is given to illustrate the application of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khan, H., Chen, W., Khan, A., Khan, T.S., Al-Madlal, Q.M.: Hyers–Ulam stability and existence criteria for coupled fractional differential equations involving p-Laplacian operator. Adv. Differ. Equ. 2018(1), 1–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Khan, H., Tunc, C., Khan, A.: Green function’s properties and existence theorems for nonlinear singular-delay-fractional differential equations. Discr. Contin. Dyn. Syst.-Series S 13(9), 2475 (2020)

    MathSciNet  MATH  Google Scholar 

  3. Shah, K., Khan, Z.A., Ali, A., Amin, R., Khan, H., Khan, A.: Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative. Alex. Eng. J. 59(5), 3221–3231 (2020)

    Article  Google Scholar 

  4. Devi, A., Kumar, A., Abdeljawad, T., Khan, A.: Stability analysis of solutions and existence theory of fractional Langevin equation. Alex. Eng. J. 60, 3641–3647 (2021)

    Article  Google Scholar 

  5. Devi, A., Kumar, A.: Existence of solutions for fractional Langevin equation involving generalized Caputo derivative with periodic boundary conditions. AIP Conf. Proc. 2214, 1–10 (2020). https://doi.org/10.1063/5.0003365

    Article  Google Scholar 

  6. Devi, A., Kumar, A., Abdeljawad, T., Khan, A.: Existence and stability analysis of solutions for fractional Langevin equation with nonlocal integral and anti-periodic type boundary conditions. Fractals 28, 1–12 (2020). https://doi.org/10.1142/S0218348X2040006X

    Article  MATH  Google Scholar 

  7. Devi, A., Kumar, A., Baleanu, D., Khan, A.: On stability analysis and existence of positive solutions for a general non-linear fractional differential equations. Adv. Differ. Equ. 2020(1), 1–16 (2020). https://doi.org/10.1186/s13662-020-02729-3

    Article  MathSciNet  MATH  Google Scholar 

  8. Devi, A., Kumar, A.: Hyers–Ulam stability and existence of solution for hybrid fractional differential equation with p-Laplacian operator. Chaos Solitons Fract. 156(1), 111859 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bedi, P., Kumar, A., Abdeljawad, T., & Khan, A. (2020). S-asymptotically \(\omega \)-periodic mild solutions and stability analysis of Hilfer fractional evolution equations. Evolution Equations and Control Theory

  10. Bedi, P., Kumar, A., Abdeljawad, T., Khan, A., Gomez-Aguilar, J.F.: Mild solutions of coupled hybrid fractional order system with Caputo–Hadamard derivatives. Fractals 29(6), 2150158 (2021)

    Article  MATH  Google Scholar 

  11. Kumar, A., & Bedi, P., On the Mild Solutions of Impulsive Semilinear Fractional Evolution Equations. In Proceedings of International Conference on Trends in Computational and Cognitive Engineering (pp. 119–128) (2021). Springer, Singapore

  12. Bedi, P., Khan, A., Kumar, A., Abdeljawad, T.: Computational study of fractional order vector borne diseases model. Fractals (2022). https://doi.org/10.1142/S0218348X22401491

    Article  MATH  Google Scholar 

  13. Podlubny, I.: Fractional Differential Equations, vol. 198. Academic Press, San Diego (1998). https://doi.org/10.2307/2653160

    Book  MATH  Google Scholar 

  14. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, New York (2006)

    Book  MATH  Google Scholar 

  15. Sher, M., Shah, K., Khan, Z.A., Khan, H., Khan, A.: Computational and theoretical modeling of the transmission dynamics of novel COVID-19 under Mittag–Leffler power law. Alex. Eng. J. 59(5), 3133–3147 (2020)

    Article  Google Scholar 

  16. Khan, A., Alshehri, H.M., Abdeljawad, T., Al-Mdallal, Q.M., Khan, H.: Stability analysis of fractional nabla difference COVID-19 model. Results Phys. 22, 103888 (2021)

    Article  Google Scholar 

  17. Gomez-Aguilar, J.F., Cordova-Fraga, T., Abdeljawad, T., Khan, A., Khan, H.: Analysis of fractal-fractional malaria transmission model. Fractals 28(08), 2040041 (2020)

    Article  MATH  Google Scholar 

  18. Boudjerida, A., Seba, D.: Controllability of nonlocal Hilfer fractional delay dynamic inclusions with non-instantaneous impulses and non-dense domain. Int. J. Dynam. Control 10, 1613–1625 (2022). https://doi.org/10.1007/s40435-021-00887-0

    Article  MathSciNet  Google Scholar 

  19. Elshenhab, A.M., Wang, X.T.: Controllability and Hyers–Ulam stability of differential systems with pure delay. Mathematics 10(8), 1248 (2022). https://doi.org/10.3390/math10081248

    Article  Google Scholar 

  20. Sundaravadivoo, B.: Controllability analysis of nonlinear fractional order differential systems with state delay and non-instantaneous impulsive effects. Discr. Contin. Dyn. Syst.-S 13(9), 2561 (2020)

    MathSciNet  MATH  Google Scholar 

  21. Muslim, M., Kumar, A.: Controllability of fractional differential equation of order \(\alpha \in (1, 2]\) with non-instantaneous impulses. Asian J. Control 20(2), 935–942 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bedi, P., Kumar, A., Abdeljawad, T., Khan, A.: Study of Hilfer fractional evolution equations by the properties of controllability and stability. Alex. Eng. J. 60(4), 3741–3749 (2021)

    Article  Google Scholar 

  23. Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z.A., Khan, A.: Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 2020(1), 1–15 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Bedi, P., Kumar, A., Khan, A.: Controllability of neutral impulsive fractional differential equations with Atangana–Baleanu–Caputo derivatives. Chaos, Solitons Fract. 150, 111153 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Aimene, D., Baleanu, D., Seba, D.: Controllability of semilinear impulsive Atangana–Baleanu fractional differential equations with delay. Chaos, Solitons Fract. 128, 51–57 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  26. Heping, M.A., Biu, L.I.U.: Exact controllability and continuous dependence of fractional neutral integro-differential equations with state-dependent delay. Acta Math. Sci. 37(1), 235–258 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cheng, Y., Agarwal, R.P., Regan, D.O.: Existence and controllability for nonlinear fractional differential inclusions with nonlocal boundary conditions and time-varying delay. Fract. Calculus Appl. Anal. 21(4), 960–980 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Singh, V.: Controllability of Hilfer fractional differential systems with non-dense domain. Numer. Funct. Anal. Optim. 40(13), 1572–1592 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bedi, P., Kumar, A., Abdeljawad, T., Khan, A.: Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations. Adv. Differ. Equ. 2020(1), 1–16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Hale, J.K., Kato, J.: Phase space for retarded equations with infinite delay. Funk Ekvac 21(1), 11–41 (1978)

    MathSciNet  MATH  Google Scholar 

  31. Banas, J.: On measures of noncompactness in Banach spaces. Comment. Math. Univ. Carol. 21(1), 131–143 (1980)

    MathSciNet  MATH  Google Scholar 

  32. Sousa, J.V.D.C., Jarad, F., Abdeljawad, T.: Existence of mild solutions to Hilfer fractional evolution equations in Banach space. Ann. Funct. Anal. 12(1), 1–16 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

” This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444). ” The authors Aziz Khan and Thabet Abdeljawad would like to thank Prince Sultan University for paying the APC and the support through TAS research lab.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AK, QA; Writing Original Draft: AK, QA, TA, KSN; Software: AK, KSN; Formal Analysis: TA; Validation: AK, ,TA, KSN.

Corresponding authors

Correspondence to Thabet Abdeljawad or Kottakkaran Sooppy Nisar.

Ethics declarations

Conflict of interst

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Ain, Q.T., Abdeljawad, T. et al. Exact Controllability of Hilfer Fractional Differential System with Non-instantaneous Impluleses and State Dependent Delay. Qual. Theory Dyn. Syst. 22, 62 (2023). https://doi.org/10.1007/s12346-023-00761-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00761-8

Keywords

Mathematics Subject Classification

Navigation