Skip to main content
Log in

Solitons, Breathers and Modulation Instability for a Higher-Order Coupled Nonlinear Schrödinger System for the Ultrashort Optical Pulses in a Nonlinear Medium

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate some soliton and breather solutions for a higher-order coupled nonlinear Schrödinger system which may describe the ultrashort optical pulses in a nonlinear medium. With the help of the existing Darboux transformation, we construct the first- and second-order soliton solutions, as well as the first- and second-order breather solutions. We present two types of the solitons, i.e., two-hump solitons and one-hump solitons. Interaction between the two one-hump solitons, and interaction between a two-hump soliton and a one-hump soliton are presented. When the velocities of two solitons are equal, we obtain the bound state of the two solitons. Real constant \(\varepsilon \) in the system affects the velocities of the solitons. We show the one breather and interaction between the two breathers. Velocities and shapes of the breathers are also affected by \(\varepsilon \). We discuss the modulation instability of that system through the linear stability analysis. That system may describe the ultrashort optical pulses in a nonlinear medium, therefore the wave phenomena proposed in our paper may provide certain theoretical references for the related experiments in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kundu, N., Ghosh, S., Roy, U.: Quantum simulation of rogue waves in Bose-Einstein condensate: an exact analytical method. Phys. Lett. A 449, 128335 (2022)

    MathSciNet  MATH  Google Scholar 

  2. Baals, C., Moreno, A.G., Jiang, J., Benary, J., Ott, H.: Stability analysis and attractor dynamics of three-dimensional dark solitons with localized dissipation. Phys. Rev. A 103, 043304 (2021)

    Google Scholar 

  3. Kruglov, V.I., Triki, H.: Periodic and solitary waves in an inhomogeneous optical waveguide with third-order dispersion and self-steepening nonlinearity. Phys. Rev. A 103, 013521 (2021)

    MathSciNet  Google Scholar 

  4. Kippenberg, T.J., Gaeta, A.L., Lipson, M., Gorodetsky, M.L.: Dissipative Kerr solitons in optical microresonators. Science 361, 6402 (2018)

    Google Scholar 

  5. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. Ser. B 25, 16 (1983)

    MATH  Google Scholar 

  6. Henderson, K.L., Peregrine, D.H., Dold, J.W.: Unsteady water wave modulations: fully nonlinear solutions and comparison with the nonlinear Schrödinger equation. Wave Motion 29, 341 (1999)

    MathSciNet  MATH  Google Scholar 

  7. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  8. Shrira, V.I., Geogjaev, V.V.: What makes the Peregrine soliton so special as a prototype of freak waves? J. Eng. Math. 67, 11 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Baronio, F., Conforti, M., Degasperis, A., Lombardo, S., Onorato, M., Wabnitz, S.: Vector rogue waves and baseband modulation instability in the defocusing regime. Phys. Rev. Lett. 113, 034101 (2014)

    Google Scholar 

  10. Kanna, T., Sakkaravarthi, K.: Multicomponent coherently coupled and incoherently coupled solitons and their collisions. J. Phys. A 44, 285211 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Sakkaravarthi, K., Kanna, T.: Bright solitons in coherently coupled nonlinear Schrödinger equations with alternate signs of nonlinearities. J. Math. Phys. 54, 013701 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Park, Q.H., Shin, H.J.: Painlevé analysis of the coupled nonlinear Schrödinger equation for polarized optical waves in an isotropic medium. Phys. Rev. E 59, 2373 (1999)

    MathSciNet  Google Scholar 

  13. Malomed, B.A.: Bound solitons in coupled nonlinear Schrödinger equations. Phys. Rev. A 45, R8321 (1992)

    Google Scholar 

  14. Xu, T., Chen, Y., Lin, J.: Localized waves of the coupled cubic-quintic nonlinear Schrödinger equations in nonlinear optics. Chin. Phys. B 26, 120201 (2017)

    Google Scholar 

  15. Du, Z., Tian, B., Qu, Q.X., Wu, X.Y., Zhao, X.H.: Vector rational and semi-rational rogue waves for the coupled cubic-quintic nonlinear Schrödinger system in a non-Kerr medium. Appl. Numer. Math. 153, 179 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Sun, W.R., Liu, D.Y., Xie, X.Y.: Vector semirational rogue waves and modulation instability for the coupled higher-order nonlinear Schrödinger equations in the birefringent optical fibers. Chaos 27, 043114 (2017)

    MATH  Google Scholar 

  17. Lan, Z.Z.: Rogue wave solutions for a coupled nonlinear Schrödinger equation in the birefringent optical fiber. Appl. Math. Lett. 98, 128 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Du, Z., Ma, Y.P.: Beak-shaped rogue waves for a higher-order coupled nonlinear Schrödinger system with \(4\times 4\) Lax pair Appl. Math. Lett. 116, 106999 (2021)

    MATH  Google Scholar 

  19. Williams, J., Walser, R., Cooper, J., Cornell, E., Holland, M.: Nonlinear Josephson-type oscillations of a driven, two-component Bose-Einstein condensate. Phys. Rev. A 59, R31 (1999)

    Google Scholar 

  20. Zhao, L.C., Ling, L.M., Yang, Z.Y., Liu, J.: Pair-tunneling induced localized waves in a vector nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 23, 21 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Williams, J., Walser, R., Cooper, J., Cornell, E.A., Holland, M.: Excitation of a dipole topological state in a strongly coupled two-component Bose-Einstein condensate. Phys. Rev. A 61, 033612 (2000)

    Google Scholar 

  22. Ling, L.M., Zhao, L.C.: Integrable pair-transition-coupled nonlinear Schrödinger equations. Phys. Rev. E 92, 022924 (2015)

    MathSciNet  Google Scholar 

  23. Liu, C., Chen, S.C., Yao, X., Akhmediev, N.: Non-degenerate multi-rogue waves and easy ways of their excitation. Physica D 433, 133192 (2022)

    MATH  Google Scholar 

  24. Chen, S.C., Liu, C.: Hidden Akhmediev breathers and vector modulation instability in the defocusing regime. Physica D 438, 133364 (2022)

    MathSciNet  MATH  Google Scholar 

  25. Che, W.J., Chen, S.C., Liu, C., Zhao, L.C., Akhmediev, N.: Nondegenerate Kuznetsov-Ma solitons of Manakov equations and their physical spectra. Phys. Rev. A 105, 043526 (2022)

    MathSciNet  Google Scholar 

  26. Liu, C., Chen, S.C., Yao, X.K., Akhmediev, N.: Modulation instability and non-degenerate Akhmediev breathers of Manakov equations. Chin. Phys. Lett. 39, 094201 (2022)

    Google Scholar 

  27. Liu, D.Y., Sun, W.R.: Rational solutions for the nonlocal sixth-order nonlinear Schrödinger equation. Appl. Math. Lett. 84, 63 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Xiang, X.S., Zuo, D.W.: Breather and rogue wave solutions of coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn. 107, 1195 (2022)

    Google Scholar 

  29. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132, 108094 (2022)

    MathSciNet  MATH  Google Scholar 

  30. Jia, H.X., Zuo, D.W., Tian, X.S., Guo, Z.F.: Characteristics of coexisting rogue wave and breather in vector nonlinear Schrödinger system. Appl. Math. Lett. 136, 108461 (2023)

    MATH  Google Scholar 

  31. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Considering the shallow water of a wide channel or an open sea through a generalized (2+1)-dimensional dispersive long-wave system. Qual. Theory Dyn. Syst. 21, 104 (2022)

    MathSciNet  MATH  Google Scholar 

  32. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 77, 2818 (2022)

    MathSciNet  Google Scholar 

  33. Gao, X.Y., Guo, Y.J., Shan, W.R.: Oceanic shallow-water symbolic computation on a (2+1)-dimensional generalized dispersive long-wave system. Phys. Lett. A 457, 128552 (2023)

    MathSciNet  MATH  Google Scholar 

  34. Wang, M., Tian, B., Zhou, T.Y.: Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain. Chaos Solitons Fract. 152, 111411 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an in homogeneous optical fiber. Chaos Solitons Fract. 156, 111719 (2022)

    MATH  Google Scholar 

  36. Wu, X.H., Gao, Y.T., Yu, X., Liu, L.Q., Ding, C.C.: Vector breathers, rogue and breather-rogue waves for a coupled mixed derivative nonlinear Schrödinger system in an optical fiber. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-022-08058-2

  37. Shen, Y., B., Tian, Zhou, T.Y., Gao, X.T.: Shallow-water-wave studies on a (2+1)-dimensional Hirota-Satsuma-Ito system: X-type soliton, resonant Y-type soliton and hybrid solutions. Chaos Solitons Fract. 157, 111861 (2022)

  38. Gao, X.Y., Guo, Y.J., Shan, W.R.: Letter to the Editor on a (2+1)-dimensional variable-coefficient Sawada-Kotera system in plasma physics and fluid dynamics. Results Phys. 44, 106099 (2023)

    Google Scholar 

  39. Liu, F.Y., Gao, Y.T., Yu, X.: Rogue-wave, rational and semi-rational solutions for a generalized (3+1)-dimensional Yu-Toda-Sasa-Fukayama equation in a two-layer fluid. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-022-08017-x

  40. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: N-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-022-07959-6

  41. Gao, X.Y., Guo, Y.J., Shan, W.R.: On a Whitham-Broer-Kaup-like system arising in the oceanic shallow water. Chin. J. Phys. (2023). https://doi.org/10.1016/j.cjph.2022.11.005

  42. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Hu, L., Li, L.Q.: Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation. Wave Motion 114, 103036 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation and solitons for a Lakshmanan-Porsezian-Daniel equation. Chaos Solitons Fract. 162, 112399 (2022)

    MathSciNet  MATH  Google Scholar 

  44. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

  45. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

  46. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

    MATH  Google Scholar 

  47. Liu, D.Y., Yu, H.M.: Mixed localized wave solutions of the Hirota equation. Appl. Math. Lett. 118, 107154 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Gao, X.Y., Guo, Y.J., Shan, W.R.: Regarding the shallow water in an ocean via a Whitham-Broer-Kaup-like system: hetero-Bäcklund transformations, bilinear forms and \(M\) solitons. Chaos Solitons Fract. 162, 112486 (2022)

    MATH  Google Scholar 

  49. Shen, Y., B., Tian, Zhou, T.Y., Gao, X.T.: Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws, N-fold Darboux transformation and explicit exact solutions. Chaos Solitons Fract. 164, 112460 (2022)

  50. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    MathSciNet  MATH  Google Scholar 

  51. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

    MATH  Google Scholar 

  52. Zhou, T.Y., Tian, B., Y.Q., Chen, Y., Shen: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417 (2022)

  53. Shen, Y., Tian, B., Liu, S.H., Zhou, T.Y.: Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447 (2022)

    Google Scholar 

  54. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599 (2022)

    Google Scholar 

  55. Gao, X.Y., Guo, Y.J., Shan, W.R.: Symbolically computing the shallow water via a (2+1)-dimensional generalized modified dispersive water-wave system: similarity reductions, scaling and hetero-Bäcklund transformations. Qual. Theory Dyn. Syst. 22, 17 (2023)

  56. Zhou, T.Y., Tian, B., Zhang, C.R., Liu, S.H.: Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. Eur. Phys. J. Plus 137, 912 (2022)

    Google Scholar 

  57. Gao, X.Y., Guo, Y.J., Shan, W.R., Du, Z., Chen, Y.Q.: Magnetooptic studies on a ferromagnetic material via an extended (3+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. Qual. Theory Dyn. Syst. 21, 153 (2022)

  58. Gao, X.Y., Guo, Y.J., Shan, W.R.: Bilinear auto-Bäcklund transformations and similarity reductions for a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system in fluid mechanics and lattice dynamics. Qual. Theory Dyn. Syst. 21, 95 (2022)

    MATH  Google Scholar 

  59. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Liu, F.Y., Jia, T.T.: Darboux transformation, bright and darkCbright solitons of an N-coupled high-order nonlinear Schrödinger system in an optical fiber. Mod. Phys. Lett. B 36, 2150568 (2022)

    Google Scholar 

  60. Nasreen, N., Seadawy, A.R., Lu, D., Arshad, M.: Construction of modulation instability analysis and optical soliton solutions of pertubed nonlinear Schrödinger dynamical equation with power law nonlinearity in non-kerr medium. Results Phys. 13, 102263 (2019)

    Google Scholar 

  61. Nasreen, N., Lu, D., Arshad, M.: Optical soliton solutions of nonlinear Schrödinger equation with second order spatiotemporal dispersion and its modulation instability. Optik 161, 221 (2018)

    Google Scholar 

  62. Nasreen, N., Seadawy, A.R., Lu, D.: Study of modulation instability analysis and optical soliton solutions of higher-order dispersive nonlinear Schrödinger equation with dual-power law nonlinearity. Mod. Phys. Lett. B 33, 1950309 (2019)

    Google Scholar 

  63. Seadawy, A.R., Lu, D., Nasreen, N., Nasreen, S.: Structure of optical solitons of resonant Schrödinger equation with quadratic cubic nonlinearity and modulation instability analysis. Physica A 534, 122155 (2019)

    MathSciNet  MATH  Google Scholar 

  64. Nasreen, N., Seadawy, A.R., Lu, D., Albarakati, W.A.: Dispersive solitary wave and soliton solutions of the gernalized third order nonlinear Schrödinger dynamical equation by modified analytical method. Results Phys. 15, 102641 (2019)

    Google Scholar 

  65. Houwe, A., Saliou, Y., Djorwe, P., Abbagari, S., Akinyemi, L., Doka, S.Y.: Modulation instability gain and modulated wave shape incited by the acoustic longitudinal vibrations in molecular chain model. Phys. Scr. 97, 085206 (2022)

    Google Scholar 

  66. Csavina, J., Field, J., Félix, O., Corral-Avitia, A.Y., Sáez, A.E., Betterton, E.A.: Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci. Total Environ. 487, 82 (2014)

    Google Scholar 

  67. Abbagari, S., Houwe, A., Rezazadeh, H., Bekir, A., Bouetou, T.B., Crépin, K.T.: Reply on the comment on optical soliton to multi-core (coupling with all the neighbors) directional couplers and modulation instability reply. Eur. Phys. J. Plus 137, 114 (2022)

    Google Scholar 

  68. Alphonse, H., Djorwe, P., Abbagari, S., Doka, S.Y., Engo, S.N.: Discrete solitons in nonlinear optomechanical array. Chaos Solitons Fract. 154, 111593 (2022)

    MathSciNet  Google Scholar 

  69. Zakharov, V.E., Ostrovsky, L.A.: Modulation instability: the beginning. Physica D 238, 540 (2009)

    MathSciNet  MATH  Google Scholar 

  70. Ostrovskaya, E.A., Kivshar, Y.S., Skryabin, D.V., Firth, W.J.: Stability of multihump optical solitons. Phys. Rev. Lett. 83, 296 (1999)

    MATH  Google Scholar 

  71. Pelinovsky, D.E., Yang, J.K.: Instabilities of multihump vector solitons in coupled nonlinear Schrödinger equations. Stud. Appl. Math. 115, 109 (2005)

    MathSciNet  MATH  Google Scholar 

  72. Porsezian, K., Kuriakose, V.C.: Optical Solitons: Theoretical and Experimental Challenges. Springer, New York (2003)

    Google Scholar 

  73. Liu, C., Wu, Y.H., Chen, S.C., Yao, X., Akhmediev, N.: Exact analytic spectra of asymmetric modulation instability in systems with self-steepening effect. Phys. Rev. Lett. 127, 094102 (2021)

    MathSciNet  Google Scholar 

  74. Chen, S.C., Liu, C., Yao, X., Zhao, L.C., Akhmediev, N.: Extreme spectral asymmetry of Akhmediev breathers and Fermi-Pasta-Ulam recurrence in a Manakov system. Phys. Rev. E 104, 024215 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02 and by the BUPT Excellent Ph.D. Students Foundation (Nos. CX2022312 and CX2022156).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, DY., Tian, B., Shen, Y. et al. Solitons, Breathers and Modulation Instability for a Higher-Order Coupled Nonlinear Schrödinger System for the Ultrashort Optical Pulses in a Nonlinear Medium. Qual. Theory Dyn. Syst. 22, 59 (2023). https://doi.org/10.1007/s12346-022-00728-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00728-1

Keywords

Navigation