Skip to main content
Log in

Infinitely Many Sign-Changing Solutions for the Nonlinear Schrödinger-Poisson System with Super 2-linear Growth at Infinity

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the sign-changing solutions to the following Schrödinger-Poisson system

$$\begin{aligned} \qquad \left\{ \begin{array}{ll} -\Delta u+V(x)u+\lambda \phi (x) u =f(u),\ \ \ &{}\ x \in {\mathbb {R}}^{3},\\ -\Delta \phi =u^2, \ \ \ &{}\ x \in {\mathbb {R}}^{3}, \\ \end{array} \right. \end{aligned}$$

where \(\lambda >0\) is a parameter and f is super 2-linear at infinity. By using the method of invariant sets of descending flow and a multiple critical points theorem, we prove that this system possesses infinitely many sign-changing solutions for any \(\lambda >0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alves, C.O., Souto, M.A.S.: Existence of least energy nodal solution for a Schrödinger-Poisson system in bounded domains. Z. Angew. Math. Phys. 65, 1153–1166 (2014). https://doi.org/10.1007/s00033-013-0376-3

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti, A.: On Schrödinger-Poisson systems. Milan J. Math. 76, 257–274 (2008). https://doi.org/10.1007/s00032-008-0094-z

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosetti, A., Ruiz, D.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008). https://doi.org/10.1142/S021919970800282X

    Article  MathSciNet  MATH  Google Scholar 

  4. Azzollini, A., d’Avenia, P., Pomponio, A.: On the Schrödinger-Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non-Linéaire 27, 779–791 (2010). https://doi.org/10.1016/J.ANIHPC.2009.11.012

    Article  MathSciNet  MATH  Google Scholar 

  5. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008). https://doi.org/10.1016/j.jmaa.2008.03.057

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartsch, T., Pankov, A., Wang, Z.-Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 1–21 (2001). https://doi.org/10.1142/S0219199701000494

    Article  MathSciNet  MATH  Google Scholar 

  7. Bartsch, T., Pankov, A., Wang, Z.-Q.: Existence and multiplicity results for some superlinear elliptic problems on \({\mathbb{R} }^{N}\). Comm. Partial Differ Equ. 20, 1725–1741 (1995). https://doi.org/10.1080/03605309508821149

    Article  MATH  Google Scholar 

  8. Bartsch, T., Liu, Z.: On a superlinear elliptic \(p\)-Laplacian equation. J. Differ Equ. 198, 149–175 (2004). https://doi.org/10.1016/j.jde.2003.08.001

    Article  MathSciNet  MATH  Google Scholar 

  9. Bartsch, T., Liu, Z., Weth, T.: Sign-changing solutions of superlinear Schrödinger equations. Comm. Partial Differ Equ. 29, 25–42 (2004)

    Article  MATH  Google Scholar 

  10. Bartsch, T., Liu, Z., Weth, T.: Nodal solutions of a \(p\)-Laplacian equation. Proc. Lond. Math. Soc. 91, 129–152 (2005). https://doi.org/10.1112/S0024611504015187

    Article  MathSciNet  MATH  Google Scholar 

  11. Bartsch, T., Wang, Z.-Q.: On the existence of sign-changing solutions for semilinear Dirichlet problems. Topol. Methods Nonlinear Anal. 7, 115–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benci, V., Fortunato, D.: Variational methods in nonlinear field equations. Springer, (2014). https://doi.org/10.1007/978-3-319-06914-2

  14. Chen, S., Tang, X.: Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in \({\mathbb{R} }^{3}\). Z. Angew. Math. Phys. (2016). https://doi.org/10.1007/s00033-016-0695-2

    Article  MATH  Google Scholar 

  15. d’Avenia, P., Pietro, L., Siciliano, G.: Nonautonomous Klein-Gordon-Maxwell systems in a bounded domain. Adv. Nonlinear Anal. 3(S1), s37–s45 (2014). https://doi.org/10.1515/anona-2014-0009

    Article  MathSciNet  MATH  Google Scholar 

  16. Gu, L.-H., Jin, H., Zhang, J.-J.: Sign-changing solutions for nonlinear Schrödinger-Poisson systems with subquadratic or quadratic growth at infinity. Nonlinear Anal. 198, 111897 (2020). https://doi.org/10.1016/j.na.2020.111897

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, L.: Sign-changing solutions for fractional Schrödinger-Poisson system in \({\mathbb{R} }^3\). Appl. Anal. 98, 2085–2104 (2019). https://doi.org/10.1080/00036811.2018.1448074

    Article  MathSciNet  MATH  Google Scholar 

  18. Guo, H.: Nonexistence of least energy nodal solutions for Schrödinger-Poisson equation. Appl. Math. Lett. 68, 135–142 (2017). https://doi.org/10.1016/j.aml.2016.12.016

    Article  MathSciNet  MATH  Google Scholar 

  19. Guo, H., Wang, T.: A note on sign-changing solutions for the Schrödinger-Poisson system. Electron. Res. Arch. 28, 195–203 (2020). https://doi.org/10.3934/era.2020013

    Article  MathSciNet  MATH  Google Scholar 

  20. Ianni, I.: Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 365–386 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \({\mathbb{R}}^{N}\). Proc. R. Soc. Edinb. Sect. A Math. 129, 787–809 (1999). https://doi.org/10.1017/S0308210500013147

    Article  MATH  Google Scholar 

  22. Ji, C., Fang, F., Zhang, B.: Least energy sign-changing solutions for the nonlinear Schrödinger-Poisson system. Electron. J. Differ Equ. (2017) Paper No. 282

  23. Jiang, Y., Zhou, H.: Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential. Sci. China Math. 57, 1163–1174 (2014). https://doi.org/10.1007/s11425-014-4790-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Jin, Q.F.: Multiple sign-changing solutions for nonlinear Schrödinger equations with potential well. Appl. Anal. 99(15), 2555–2570 (2020). https://doi.org/10.1080/00036811.2019.1572883

    Article  MathSciNet  MATH  Google Scholar 

  25. Kim, S., Seok, J.: On nodal solutions of the nonlinear Schrödinger-Poisson equations. Commun. Contemp. Math. 14, 1250041 (2012). https://doi.org/10.1142/S0219199712500411

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, G., Peng, S., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system. Commun. Contemp. Math. 12, 1069–1092 (2010). https://doi.org/10.1142/S0219199710004068

    Article  MathSciNet  MATH  Google Scholar 

  27. Liang, Z., Xu, J., Zhu, X.: Revisit to sign-changing solutions for the nonlinear Schrödinger-Poisson system in \({\mathbb{R} }^3\). J. Math. Anal. Appl. 435, 783–799 (2016). https://doi.org/10.1016/j.jmaa.2015.10.076

    Article  MathSciNet  MATH  Google Scholar 

  28. Lieb, E., Loss, M.: Analysis, graduate studies in mathematics. vol. 14. AMS. (1997)

  29. Lions, E., Simon, B.: The Thomas-Fermi theory of atoms, moleules and solids. Adv. Math. 23, 22–116 (1977). https://doi.org/10.1016/0001-8708(77)90108-6

    Article  Google Scholar 

  30. Lions, P.: Solutions of Hartree-Fock equations for Coulomb systems. Comm. Math. Phys. 109, 33–97 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Z., Sun, J.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differ Equ. 172, 257–299 (2001). https://doi.org/10.1006/jdeq.2000.3867

    Article  MathSciNet  MATH  Google Scholar 

  32. Liu, Z., Wang, Z.-Q., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear Schrödinger-Poisson system. Ann. Mat. Pura Appl. 195, 775–794 (2016). https://doi.org/10.1007/s10231-015-0489-8

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu, J., Liao, J.-F., Tang, C.-L.: Ground state solution for a class of Schrödinger equations involving general critical growth term. Nonlinearity. 30(3), 899–911 (2017). https://doi.org/10.1088/1361-6544/aa5659

    Article  MathSciNet  MATH  Google Scholar 

  34. Liu, J., Liu, X., Wang, Z.-Q.: Multiple mixed states of nodal solutions for nonlinear Schrödinger systems. Calc. Var. Partial Differ Equ. 52, 565–586 (2015). https://doi.org/10.1007/s00526-014-0724-y

    Article  MATH  Google Scholar 

  35. Nie, J.J., Li, Q.Q.: Multiplicity of sign-changing solutions for a supercritical nonlinear Schrödinger equation. Appl. Math. Lett. 109, 106569 (2020). https://doi.org/10.1016/j.aml.2020.106569

    Article  MathSciNet  MATH  Google Scholar 

  36. Qian, A., Liu, J., Mao, A.: Ground state and nodal solutions for a Schrödinger-Poisson equation with critical growth. J. Math. Phys. 59, 121509 (2018). https://doi.org/10.1063/1.5050856

    Article  MathSciNet  MATH  Google Scholar 

  37. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006). https://doi.org/10.1016/j.jfa.2006.04.005

    Article  MathSciNet  MATH  Google Scholar 

  38. Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198, 349–368 (2010). https://doi.org/10.1007/s00205-010-0299-5

    Article  MathSciNet  MATH  Google Scholar 

  39. Teng, K.M.: Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016). https://doi.org/10.1016/j.jde.2016.05.022

    Article  MATH  Google Scholar 

  40. Vaira, G.: Ground states for Schrödinger-Poisson type systems. Ric. Mat. 2, 263–297 (2011). https://doi.org/10.1007/s11587-011-0109-x

    Article  MATH  Google Scholar 

  41. Wang, D., Zhang, H., Guan, W.: Existence of least-energy sign-changing solutions for Schrödinger-Poisson system with critical growth. J. Math. Anal. Appl. 479, 2284–2301 (2019). https://doi.org/10.1016/j.jmaa.2019.07.052

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Z., Zhou, H.-S.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in \({\mathbb{R} }^3\). Calc. Var. Partial. Differ. Equ. 52, 927–943 (2015). https://doi.org/10.1007/s00526-014-0738-5

    Article  MATH  Google Scholar 

  43. Wu, Y.Z., Huang, Y.S.: Sign-changing solutions for Schrödinger equations with indefinite superlinear nonlinearities. J. Math. Anal. Appl. 401, 850–860 (2013). https://doi.org/10.1016/j.jmaa.2013.01.006

    Article  MathSciNet  MATH  Google Scholar 

  44. Yang, X.Y., Tang, X.H., Zhang, Y.P.: Positive, negative, and sign-changing solutions to a quasilinear Schrödinger equation with a parameter. J. Math. Phys. 60, 121510 (2019). https://doi.org/10.1063/1.5116602

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, J., Squassina, M.: Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity. Adv. Nonlinear Stud. 1, 15–30 (2016). https://doi.org/10.1515/ans-2015-5024

    Article  MATH  Google Scholar 

  46. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008). https://doi.org/10.1016/j.jmaa.2008.04.053

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhao, L., Liu, H., Zhao, F.: Existence and concentration of solutions for the Schrödinger-Poisson equations with steep well potential. J. Differ. Equ. 255, 1–23 (2013). https://doi.org/10.1016/j.jde.2013.03.005

    Article  MATH  Google Scholar 

  48. Zhong, X.-J., Tang, C.-L.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a 3-linear growth nonlinearity. J. Math. Anal. Appl. 455, 1956–1974 (2017). https://doi.org/10.1016/j.jmaa.2017.04.010

    Article  MathSciNet  MATH  Google Scholar 

  49. Zhong, X.-J., Tang, C.-L.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in \({\mathbb{R} }^3\). Nonlinear Anal. RWA 39, 166–184 (2018). https://doi.org/10.1016/j.nonrwa.2017.06.014

    Article  MATH  Google Scholar 

  50. Zou, W.M., Schechter, M.: Critical point theory and its applications. Springer, New York (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Ping Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by National Natural Science Foundation of China (No. 11971393).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wu, XP. & Tang, CL. Infinitely Many Sign-Changing Solutions for the Nonlinear Schrödinger-Poisson System with Super 2-linear Growth at Infinity. Qual. Theory Dyn. Syst. 22, 56 (2023). https://doi.org/10.1007/s12346-023-00757-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00757-4

Keywords

Mathematics Subject Classification

Navigation