Skip to main content
Log in

Spreading Speed of a Cholera Epidemic Model in a Periodic Environment

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is devoted to the spreading speed of a cholera epidemic model, which is built upon a time-periodic reaction-diffusion system that is not necessarily monotonic. When the initial distribution of infected hosts and bacteria appears on a compact domain, we derive a rough expansion speed of the infection and the bacteria over space. Our results indicate that the disease may spread at an almost constant average speed. Although our approach can not give an explicit threshold in general, our conclusions imply that there exists a constant spreading speed and the numerical simulation is applicable to estimate the spreading ability of the disease in further application. Furthermore, if the parameters are constants, we obtain an explicit formulation of spreading speed. When incidence functions take the special form, the spreading speed is the minimal wave speed of traveling wave solutions in earlier works. Additionally, the theoretical findings of this work highlight that the movement of infected hosts and bacteria, and direct and indirect transmission routes are important factors affecting the spatial spreading ability of cholera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Aronsson, D.G., Kellogg, R.B.: On a differential equation arising from compartmental analysis. Math. Biosci. 38, 113–122 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse propagation, in Partial Differential Equations and Related Topics, Goldstein, J. A.: (Ed.), Lecture Notes in Math. 446, Springer, Berlin, pp. 5-49, (1975)

  3. Bertuzzo, E., Casagrandi, R., Gatto, M., Rodriguez-Iturbe, I., Rinaldo, A.: On spatially explicit models of cholera epidemics. J. R. Soc. Interf. 7, 321–333 (2010)

    Google Scholar 

  4. Che, E.N., Kang, Y., Abdul-Aziz, Y.: Risk structured model of cholera infections in Cameroon. Math. Biosci. 320(108303), 16 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Chen, X., Tsai, J.-C.: Spreading speed in a farmers and hunter-gatherers model arising from Neolithic transition in Europe. J. Math. Pures Appl. 143, 192–207 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Codeco, C.T.: Endemic and epidemic dynamics of cholera: the role of the aquatic reservoir. BMC Infect. Dis. 1(1), 14 (2001)

    Google Scholar 

  7. Dangbé, E., Irépran, D., Perasso, A., Békollé, D.: Mathematical modelling and numerical simulations of the influence of hygiene and seasons on the spread of cholera. Math. Biosci. 296, 60–70 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Diekmann, O.: Thresholds and travelling waves for the geographical spread of infection. J. Math. Biol. 69, 109–130 (1978)

    MathSciNet  MATH  Google Scholar 

  9. Diekmann, O.: Run for your life. A note on the asymptotic speed of propagation of an epidemic. J. Diff. Eq. 33, 58–73 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Ducrot, A.: Convergence to generalized transition waves for some Holling–Tanner prey-predator reaction-diffusion system. J. Math. Pures Appl. 100, 1–15 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Ducrot, A.: Spatial propagation for a two component reaction-diffusion system arising in population dynamics. J. Diff. Eq. 260, 8316–8357 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Eisenberg, M.C., Kujbida, G., Tuite, A.R., Fisman, D.N., Tien, J.H.: Examining rainfall and cholera dynamics in Haiti using statistical and dynamic modeling approaches. Epidemics 5, 197–207 (2013)

    Google Scholar 

  13. Fang, J., Zhao, X.-Q.: Traveling waves for monotone semiflows with weak compactness. SIAM J. Math. Anal. 46, 3678–3704 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Girardin, L.: Non-cooperative Fisher-KPP systems: traveling waves and long-time behavior. Nonlinearity 31, 108–164 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Hartley, D.M., Morris, J.G., Jr., Smith, D.L.: Hyperinfectivity: a critical element in the ability of V.cholerae to cause epidemics? PLoS Med. 3, 63–69 (2006)

    Google Scholar 

  16. Havumaki, J., Meza, R., Phares, C.R., Date, K., Eisenberg, M.C.: Comparing alternative cholera vaccination strategies in Maela refugee camp: using a transmission model in public health practice, BMC Infect. Dis., 19, ID: 1075, 17 pp, (2019)

  17. Hirsch, M.W.: Systems of differential equations that are competitive or cooperative II: convergence almost everywhere. SIAM J. Math. Anal. 16, 423–439 (1985)

    MathSciNet  MATH  Google Scholar 

  18. Huang, M., Wu, S.-L., Zhao, X.-Q.: Propagation dynamics for time-periodic and partially degenerate reaction-diffusion systems. SIAM J. Math. Anal. 54, 1860–1897 (2022)

    MathSciNet  MATH  Google Scholar 

  19. Islam, S., Rheman, S., Sharker, A.Y., Hossain, S., Nair, G.B., Luby, S.P., Larson, C.P., Sack, D.A.: Climate change and its impact on transmission dynamics of cholera, Climate Change Cell, DoE, MoEF; Component 4B, CDMP, MoFDM, Dhaka, (2009)

  20. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. A 115, 700–721 (1927)

    MATH  Google Scholar 

  21. Korobeinikov, A., Maini, P.K.: Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22, 113–128 (2005)

    MATH  Google Scholar 

  22. Lewis, M.A., Petrovskii, S.V., Sergei, J.R.: The mathematics behind biological invasions, interdisciplinary applied mathematics, p. 44. Springer, Cham (2016)

    MATH  Google Scholar 

  23. Liang, X., Yi, Y., Zhao, X.-Q.: Spreading speeds and traveling waves for periodic evolution systems. J. Diff. Eq. 231, 57–77 (2006)

    MathSciNet  MATH  Google Scholar 

  24. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Comm. Pure Appl. Math. 60, 1–40 (2007)

    MathSciNet  MATH  Google Scholar 

  25. Lin, G., Pan, S., Yan, X.P.: Spreading speeds of epidemic models with nonlocal delays. Mathe. Biosci. Eng. 16, 7562–7588 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Lui, R.: Biological growth and spread modeled by systems of recursions. I Mathematical theory. Math. Biosci. 93, 269–295 (1989)

    MathSciNet  MATH  Google Scholar 

  27. Lupica, A., Gumel, A.B., Palumbo, A.: The computation of reproduction numbers for the environment-host-environment cholera transmission dynamics. J. Biol. Dyn. 28, 1–49 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiaotemporal patterns in ecology and epidemiology: theory, models and simulation. Chapman & Hall/CRC, Boca Raton (2008)

    MATH  Google Scholar 

  29. Mukandavire, Z., Liao, S., Wang, J., Gaff, H., Smith, D.L., Morris, J.G.: Estimating the reproductive numbers for the 2008–2009 cholera outbreaks in Zimbabwe. P. Natl. Acad. Sci. USA 108, 8767–8772 (2011)

    Google Scholar 

  30. Murray, J.D.: Mathematical biology, II. Spatial models and biomedical applications, Third edition. Interdisciplinary applied mathematics, p. 18, Springer, New York (2003)

  31. Nadin, G.: Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation. Eur. J. Appl. Math. 22, 169–185 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Pan, S.: Invasion speed of a predator-prey system. Appl. Math. Lett. 74, 46–51 (2017)

    MathSciNet  MATH  Google Scholar 

  33. Pao, C.V.: Nonlinear parabolic and elliptic equations. Plenum Press, New York (1992)

    MATH  Google Scholar 

  34. Posny, D., Wang, J.: Modelling cholera in periodic environments. J. Biol. Dyn. 8, 1–19 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Rinaldo, A., Bertuzzo, E., Mari, L., Righetto, L., Blokesch, M., Gatto, M., Casagrandi, R., Murray, M., Vesenbeckh, S.M., RodriguezIturbe, I.: Reassessment of the 2010–2011 Haiti cholera outbreak and rainfall-driven multiseason projections. Proc. Natl. Acad. Sci. USA 109, 6602–6607 (2012)

    Google Scholar 

  36. Shigesada, N., Kawasaki, K.: Biological invasions: theory and practice. Oxford University Press, Oxford (1997)

    Google Scholar 

  37. Shu, H., Ma, Z., Wang, X.-S.: Threshold dynamics of a nonlocal and delayed cholera model in a spatially heterogeneous environment. J. Math. Biol. 83(41), 33 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Song, H., Zhang, Y.: Traveling waves for a diffusive SIR-B epidemic model with multiple transmission pathways. Electron. J. Qual. Theory Differ. Equ. 2019(86), 19 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Thieme, H.R., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction diffusion models. J. Differential Equations 195, 430–470 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Tien, J.H., Earn, D.J.D.: Multiple transmission pathways and disease dynamics in a waterborne pathogen model. Bull. Math. Biol. 72, 1506–1533 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Van den Driessche, P., Yakubu, A.A.: Disease extinction versus persistence in discrete-time epidemic models. Bull. Math. Biol. 81, 4412–4446 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Wandiga, S.O.: Climate change and induced vulnerability to malaria and cholera in the Lake Victoria region, AIACC Final Report, Project No. AF 91, Published by the International START Secretariat, Washington, DC, USA, (2006)

  43. Wang, F.-B., Wang, X.: A general multipatch cholera model in periodic environments. Discr. Contin. Dyn. Syst. B (2022). https://doi.org/10.3934/dcdsb.2021105

    Article  MATH  Google Scholar 

  44. Wang, J., Jing, W.: Analysis of a reaction-diffusion cholera model with distinct dispersal rates in the human population. J. Dyn. Diff. Equ. 33, 549–575 (2021)

    MathSciNet  MATH  Google Scholar 

  45. Wang, W., Zhao, X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Diff. Equ. 20, 699–717 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Wang, X., Lin, G., Ruan, S.: Spatial propagation in a within-host viral infection model, Studies. Appl. Math. 149, 43–75 (2022)

    MathSciNet  Google Scholar 

  47. Wang, X., Lin, G., Ruan, S.: Spreading speeds and traveling wave solutions of diffusive vector-borne disease models without monotonicity. Proc. R. Soc. Edinburgh A. 153, 137–166 (2023)

  48. Wang, X., Gao, D., Wang, J.: Influence of human behavior on cholera dynamics. Math. Biosci. 267, 41–52 (2015)

    MathSciNet  MATH  Google Scholar 

  49. Wang, X., Posny, D., Wang, J.: A reaction-convection-diffusion model for cholera spatial dynamics. Discr. Contin. Dyn. Syst. B 21, 2785–2809 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Wang, X., Wang, F.-B.: Impact of bacterial hyperinfectivity on cholera epidemics in a spatially heterogeneous environment. J. Math. Anal. Appl. 480(123407), 29 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Wang, X., Wang, J.: Analysis of cholera epidemics with bacterial growth and spatial movement. J. Biol. Dyn. 9, 233–261 (2015)

    MathSciNet  MATH  Google Scholar 

  52. Wang, X., Wu, R., Zhao, X.-Q.: A reaction-advection-diffusion model of cholera epidemics with seasonality and human behavior change, J. Math. Biol., 84, No. 34, 30 pp, (2022)

  53. Wang, X., Zhao, X.-Q., Wang, J.: A cholera epidemic model in a spatiotemporally heterogeneous environment. J. Math. Anal. Appl. 468, 893–912 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Wang, W., Zhao, X.-Q.: Threshold dynamics for compartmental epidemic models in periodic environments. J. Dyn. Diff. Equ. 20, 699–717 (2008)

    MathSciNet  MATH  Google Scholar 

  55. Weinberger, H.F., Lewis, M.A., Li, B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45, 183–218 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Xiao, D., Ryunosuke, M.: Spreading properties of a three-component reaction-diffusion model for the population of farmers and hunter-gatherers. Ann. Inst. H. Poincaré Anal. Non Linéaire 38, 911–951 (2021)

    MathSciNet  MATH  Google Scholar 

  57. Yang, Y., Zou, L., Zhou, J., Hsu, C.H.: Dynamics of a waterborne pathogen model with spatial heterogeneity and general incidence rate. Nonlin. Anal. Real World Appl. 53(103065), 22 (2020)

    MathSciNet  MATH  Google Scholar 

  58. Ye, Q., Li, Z., Wang, M., Wu, Y.: Introduction to reaction diffusion equations. Science Press, Beijing (2011)

    Google Scholar 

  59. Zhang, L., Wang, Z.-C., Zhang, Y.: Dynamics of a reaction-diffusion waterborne pathogen model with direct and indirect transmission. Comput. Math. Appl. 72, 202–215 (2016)

    MathSciNet  MATH  Google Scholar 

  60. Zhou, J., Yang, Y., Zhang, T.: Global dynamics of a reaction-diffusion waterborne pathogen model with general incidence rate. J. Math. Anal. Appl. 466, 835–859 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to anonymous referees for their careful reading and valuable comments.

Funding

The first author is partially supported by NSF of China (11971213) and Natural Science Foundation of Gansu Province (No. 21JR7RA535).

Author information

Authors and Affiliations

Authors

Contributions

All authors analyzed the question and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guo Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G., Pan, S. & Wang, X. Spreading Speed of a Cholera Epidemic Model in a Periodic Environment. Qual. Theory Dyn. Syst. 22, 52 (2023). https://doi.org/10.1007/s12346-023-00753-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00753-8

Keywords

AMS Subject Classification (2010)

Navigation