Skip to main content
Log in

Heat Kernel Method for Quintic and Sextic Equations in Distributions and Hyperfunctions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we reformulate the quintic and sextic equations in the spaces of generalized functions. Using the pullbacks and the heat kernels, we investigate the approximate quintic and sextic mappings in the spaces of Schwartz tempered distributions and Fourier hyperfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker, J.A.: Functional equations, tempered distributions and Fourier transforms. Trans. Am. Math. Soc. 315, 57–68 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodaghi, A., Narasimman, P., Ravi, K., Shojaee, B.: Mixed type of additive and quintic function equations. Ann. Math. Sil. 29, 35–50 (2015)

    MATH  Google Scholar 

  3. Brzdȩk, J., Popa, D., Raşa, I., Xu, B.: Ulam Stability of Operators. Academic Press, Elsevier, Oxford (2018)

    MATH  Google Scholar 

  4. Choi, C.K., Chang, J.: Stability of the sine-cosine functional equation in hyperfunctions. J. Comput. Anal. Appl. 25, 96–110 (2018)

    MathSciNet  Google Scholar 

  5. Chung, J.: A distributional version of functional equations and their stabilities. Nonlinear Anal. 62, 1037–1051 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chung, J.: A heat kernel approach to the stability of exponential equations in Schwartz distributions and hyperfunctions. J. Math. Phys. 51, 053523 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chung, J.: Stability of functional equations in the space distributions and hyperfunctions. J. Math. Anal. Appl. 286, 177–186 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chung, J.: Stability of functional equations on restricted domains in a group and their asymptotic behaviors. Comput. Math. Appl. 60, 2653–2665 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chung, J., Chung, S.Y., Kim, D.: A characterization for Fourier hyperfunctions. Publ. Res. Inst. Math. Sci. 30, 203–208 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chung, J., Chung, S.Y., Kim, D.: The stability of Cauchy equations in the space of Schwartz distributions. J. Math. Anal. Appl. 295, 107–114 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, J., Chung, S.Y., Kim, D.: Une caractérisation de l’espace de Schwartz. C. R. Acad. Sci. Paris Sér. I Math. 316, 23–25 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Chung, S.Y., Kim, D., Lee, E.G.: Periodic hyperfunctions and Fourier series. Proc. Am. Math. Soc. 128, 2421–2430 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chung, J., Sahoo, P.K.: Heat kernel method for the Levi–Civitá equation in distributions and hyperfunctions. Bull. Aust. Math. Soc. 92, 77–93 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Falihi, S., Shojaee, B., Bodaghi, A., Zivari-Kazempour, A.: Approximation on the mixed type additive-quadratic-sextic functional equation. UPB Sci. Bull. Ser. A 81, 13–22 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Fardi, M., Pishkar, I., Alidousti, J., Khan, Y.: Numerical investigation of the MHD suction-injection model of viscous fluid using a kernel-based method. Arch. Appl. Mech. 91, 4205–4221 (2021)

    Article  Google Scholar 

  16. Fardi, M., Khan, Y.: Numerical simulation of squeezing Cu-Water nanofluid flow by a kernel-based method. Int. J. Model. Simul. Sci. Comput. 13, 2250005 (2022)

    Article  Google Scholar 

  17. Fardi, M., Ghasemi, M.: Numerical solution of singularly perturbed 2D parabolic initial-boundary-value problems based on reproducing kernel theory: error and stability analysis. Numer. Methods Part. Differ. Equ. 38, 876–903 (2022)

    Article  MathSciNet  Google Scholar 

  18. Fardi, M., Al-Omari, S.K.Q., Araci, S.: A pseudo-spectral method based on reproducing kernel for solving the time-fractional diffusion-wave equation. Adv. Contin. Discrete Mod. 2022, 54 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gelfand, I.M., Shilov, G.E.: Generalized Functions IV. Academic Press, New York (1968)

    Google Scholar 

  20. Hörmander, L.: The Analysis of Linear Partial Differential Operators I. Springer, Berlin (1983)

    MATH  Google Scholar 

  21. Kang, D., Kim, H.B.: Fourier transforms and \(L^2\)-stability of diffusion equations. J. Comput. Appl. Math. 409, 114181 (2022)

    Article  MATH  Google Scholar 

  22. Kang, D., Koh, H.: A fixed point approach to the stability of sextic Lie*-derivations. Filomat 31, 4933–4944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kawai, T.: On the theory of Fourier hyperfunctions and its applications to partial differential equations with constant coefficients. J. Fac. Sci. Univ. Tokyo 17, 467–517 (1970)

    MathSciNet  MATH  Google Scholar 

  24. Lee, Y.S.: Stability of quadratic functional equations in tempered distributions. J. Inequal. Appl. 2012, 177 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lee, Y.S., Chung, S.Y.: Stability of an Euler–Lagrange–Rassias equation in the spaces of generalized functions. Appl. Math. Lett. 21, 694–700 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lee, Y.S., Chung, S.Y.: Stability for quadratic functional equation in the spaces of generalized functions. J. Math. Anal. Appl. 336, 101–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lee, Y.S., Chung, S.Y.: Stability of quartic functional equations in the spaces of generalized functions. Adv. Differ. Equ. 2009, 838347 (2009)

  28. Matsuzawa, T.: A calculus approach to hyperfunctions III. Nagoya Math. J. 118, 133–153 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Miahi, M., Mirzaee, F., Khodaei, H.: On convex-valued G-\(m\)-monomials with applications in stability theory. RACSAM 115, 76 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Miahi, M., Mirzaee, F., Khodaei, H.: Stability problem for Pexiderized Cauchy–Jensen type functional equations of fuzzy number-valued mappings. Iran. J. Fuzzy Syst. 19, 141–151 (2022)

    MathSciNet  MATH  Google Scholar 

  31. Mohanapriya, A., Park, C., Ganesh, A., Govindan, V.: Mittag–Leffler–Hyers–Ulam stability of differential equation using Fourier transform. Adv. Differ. Equ. 2020, 389 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mohiuddine, S.A., Rassias, J.M., Alotaibi, A.: Solution of the Ulam stability problem for Euler–Lagrange–Jensen \(k\)-quintic mappings. Math. Methods Appl. Sci. 40, 3017–3025 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Narasimman, P., Rassias, J.M., Ravi, K.: \(n\)-dimensional quintic and sextic functional equations and their stabilities in Felbin type spaces. Georgian Math. J. 23, 121–137 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Park, C., Cui, J.L., Eshaghi Gordji, M.: Orthogonality and quintic functional equations. Acta Math. Sin. 29, 1381–1390 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sato, M.: Theory of hyperfunctions. Sûgaku 10, 1–27 (1958)

    Google Scholar 

  36. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1966)

    MATH  Google Scholar 

  37. Zada, B.: Uniform exponential stability in the sense of Hyers and Ulam for periodic time varying linear systems. Differ. Equ. Appl. 10, 227–234 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Khodaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miahi, M., Mirzaee, F. & Khodaei, H. Heat Kernel Method for Quintic and Sextic Equations in Distributions and Hyperfunctions. Qual. Theory Dyn. Syst. 22, 53 (2023). https://doi.org/10.1007/s12346-023-00737-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00737-8

Keywords

Mathematics Subject Classification

Navigation