SciELO - Scientific Electronic Library Online

 
vol.23 número3Basic asymptotic estimates for powers of Wallis’ ratios índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • En proceso de indezaciónCitado por Google
  • No hay articulos similaresSimilares en SciELO
  • En proceso de indezaciónSimilares en Google

Compartir


Cubo (Temuco)

versión On-line ISSN 0719-0646

Cubo vol.23 no.3 Temuco dic. 2021

http://dx.doi.org/10.4067/S0719-06462021000300343 

Articles

Non-algebraic limit cycles in Holling type III zooplankton-phytoplankton models

Homero G. Díaz-Marín1 

Osvaldo Osuna2 

1 Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana, Edif. Alfa, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México. homero.diaz@umich.mx

2 Instituto de Física y Matemáticas, Universidad Michoacana, Edif. C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán, México. osvaldo.osuna@umich.mx

ABSTRACT

We prove that for certain polynomial differential equations in the plane arising from predator-prey type III models with generalized rational functional response, any algebraic solution should be a rational function. As a consequence, limit cycles, which are unique for these dynamical systems, are necessarily trascendental ovals. We exemplify these findings by showing a numerical simulation within a system arising from zooplankton-phytoplankton dynamics.

Keywords and Phrases: Predator-prey models; functional-response: Puiseux series; Newton polygon, limit cycles; invariant algebraic curve

RESUMEN

Probamos que para ciertas ecuaciones diferenciales polinomiales en el plano que aparecen a partir de modelos predador-presa de tipo III con respuesta funcional racional generalizada, toda solución algebraica debe ser una función racional. Como consecuencia, los ciclos límite, que son ´únicos para estos sistemas dinámicos, son necesariamente óvalos trascendentes. Ejemplificamos estos resultados mostrando una simulación numérica para un sistema que aparece en la dinámica de zooplancton-fitoplancton.

Texto completo disponible sólo en PDF

Full text available only in PDF format.

References

[1] D. Barrios-O’Neill, J. T. A. Dick, M. C. Emmerson, A. Ricciardi and H. J. MacIsaac, “Predator-free space, functional responses and biological invasions”, Functional Ecology, vol. 29, no. 3, pp. 377-384, 2015. [ Links ]

[2] J. Cano, “An extension of the Newton-Puiseux polygon construction to give solutions of Pfaffian forms”, Ann. Inst. Fourier (Grenoble), vol. 43, no. 1, pp. 125-142, 1993. [ Links ]

[3] M. V. Demina, “Novel algebraic aspects of Liouvillian integrability for two-dimensional polynomial dynamical systems”. Phys. Lett. A, vol. 382, no. 20, pp. 1353-1360, 2018. [ Links ]

[4] M. V. Demina, “Invariant algebraic curves for liénard dynamical systems revisited”, Appl. Math. Lett., vol. 84, pp. 42-48, 2018. [ Links ]

[5] A. Ferragut and A. Gasull. “Non-algebraic oscillations for predator-prey models”, Publ. Mat., vol. 58, suppl., pp. 195-207, 2014. [ Links ]

[6] J. Giné and M. Grau, “Coexistence of algebraic and non-algebraic limit cycles, explicitly given, using Riccati equations”, Nonlinearity, vol. 19, no. 8, pp. 1939-1950, 2006. [ Links ]

[7] J. Giné and J. Llibre, “Strongly formal Weierstrass non-integrability for polynomial differential systems in C 2”, Electron. J. Qual. Theory Differ. Equ., no. 1, pp. 1-16, 2020. [ Links ]

[8] J. Giné and J. Llibre, “Formal Weierstrass nonintegrability criterion for some classes of polynomial differential systems in C 2”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., vol. 30, no. 4, 7 pages, 2020. [ Links ]

[9] M. Hayashi, “On polynomial Li´enard systems which have invariant algebraic curves”, Funkcial. Ekvac., vol. 39, no. 3, pp. 403-408, 1996. [ Links ]

[10] E. Hille, Ordinary Differential Equations in the Complex Domain, Dover Publications, Inc., Mineola, NY, 1976. [ Links ]

[11] E. L. Ince, Ordinary Differential Equations, Dover Publications, New York, 1944. [ Links ]

[12] K. Odani, “The limit cycle of the van der Pol equation is not algebraic”, J. Differential Equations, vol. 115, no. 1, pp. 146-152, 1995. [ Links ]

[13] L. A. Real, “The kinetics of functional response”, The American Naturalist, vol. 111, no. 978, pp. 289-300, 1977. [ Links ]

[14] B. Rosenbaum and B. C. Rall, “Fitting functional responses: Direct parameter estimation by simulating differential equations”, Methods in Ecology and Evolution, vol. 9, no. 10, pp. 2076-2090, 2018. [ Links ]

[15] V. A. Ryabchenko, M. J. R. Fasham, B. A. Kagan and E. E. Popova, “What causes short-term oscillations in ecosystem models of the ocean mixed layer?”, Journal of Marine Systems, vol. 13, no. 1, pp. 33-50, 1997. [ Links ]

[16] J. Sugie, “Uniqueness of limit cycles in a predator-prey system with Holling-type functional response”, Quart. Appl. Math., vol. 58, no. 3, pp. 577-590, 2000. [ Links ]

[17] J. Sugie, R. Kohno, and R. Miyazaki, “On a predator-prey system of Holling type”, Proc. Amer. Math. Soc., vol. 125, no. 7, pp. 2041-2050, 1997. [ Links ]

[18] R. K. Upadhyay and S. R. K. Iyengar, Introduction to Mathematical Modeling and Chaotic Dynamics, CRC Press, 2013 [ Links ]

Accepted: July 07, 2021; Received: January 08, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License