Skip to main content
Log in

Symbolically Computing the Shallow Water via a (2+1)-Dimensional Generalized Modified Dispersive Water-Wave System: Similarity Reductions, Scaling and Hetero-Bäcklund Transformations

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

For the water waves, people consider some dispersive systems. Describing the nonlinear and dispersive long gravity waves travelling along two horizontal directions in the shallow water of uniform depth, we now symbolically compute a (2+1)-dimensional generalized modified dispersive water-wave system. With respect to the height of the water surface and horizontal velocity of the water wave, with symbolic computation, we work out (1) a set of the scaling transformations, (2) a set of the hetero-Bäcklund transformations, from that system to a known linear partial differential equation, and (3) four sets of the similarity reductions, each of which is from that system to a known ordinary differential equation. We pay attention that our hetero-Bäcklund transformations and similarity reductions rely on the coefficients in that system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Tanwar, D.V., Ray, A.K., Chauhan, A.: Lie symmetries and dynamical behavior of soliton solutions of KP-BBM equation. Qual. Theory Dyn. Syst. 21, 24 (2022)

    Article  MATH  Google Scholar 

  2. Chentouf, B.: Qualitative analysis of the dynamic for the nonlinear Korteweg-de Vries equation with a boundary memory. Qual. Theory Dyn. Syst. 20, 36 (2021)

    Article  MATH  Google Scholar 

  3. Bhatti, M.M., Lu, D.Q.: Head-on collision between two hydroelastic solitary waves in shallow water. Qual. Theory Dyn. Syst. 17, 103–122 (2018)

    Article  MATH  Google Scholar 

  4. Gao, X.Y., Guo, Y.J., Shan, W.R.: Auto-Bäcklund transformation, similarity reductions and solitons of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. Qual. Theory Dyn. Syst. 21, 60 (2022)

    Article  MATH  Google Scholar 

  5. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Considering the shallow water of a wide channel or an open sea through a generalized (2+1)-dimensional dispersive long-wave system. Qual. Theory Dyn. Syst. 21, 104 (2022)

    Article  MATH  Google Scholar 

  6. Gao, X.Y., Guo, Y.J., Shan, W.R.: Regarding the shallow water in an ocean via a Whitham-Broer-Kaup-like system: hetero-Bäcklund transformations, bilinear forms and M solitons. Chaos Solitons Fract. 162, 112486 (2022)

    Article  Google Scholar 

  7. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Shallow-water-wave studies on a (2+1)-dimensional Hirota-Satsuma-Ito system: X-type soliton, resonant Y-type soliton and hybrid solutions. Chaos Silotons Fract. 157, 111861 (2022)

    Article  MATH  Google Scholar 

  8. Gao, X.Y., Guo, Y.J., Shan, W.R.: Bilinear auto-Bäcklund transformations and similarity reductions for a (3+1)-dimensional generalized Yu-Toda-Sasa-Fukuyama system in fluid mechanics and lattice dynamics. Qual. Theory Dyn. Syst. 21, 95 (2022)

    Article  MATH  Google Scholar 

  9. Gao, X.Y., Guo, Y.J., Shan, W.R.: Oceanic Long-Gravity-Water-Wave Investigations on a Variable-Coefficient Nonlinear Dispersive-Wave System. Wave. Random Complex (2022) in press. https://doi.org/10.1080/17455030.2022.2039419

  10. Liu, L., Tian, B., Zhen, H.L., Liu, D.Y., Xie, X.Y.: Soliton interactions, Bäcklund transformations, Lax pair for a variable-coefficient generalized dispersive water-wave system. Wave. Random Complex 28, 343–355 (2018)

    Article  MATH  Google Scholar 

  11. Meng, D.X., Gao, Y.T., Wang, L., Xu, P.B.: Elastic and inelastic interactions of solitons for a variable-coefficient generalized dispersive water-wave system. Nonlinear Dyn. 69, 391–398 (2012)

    Article  MATH  Google Scholar 

  12. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Comment on “Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system”. Chaos Solitons Fract. 151, 111222 (2021)

  13. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599–1616 (2022)

    Article  Google Scholar 

  14. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

    Article  MATH  Google Scholar 

  15. Li, B.Q., Wazwaz, A.M., Ma, Y.L.: Two new types of nonlocal Boussinesq equations in water waves: bright and dark soliton solutions. Chin. J. Phys. 77, 1782–1788 (2022)

    Article  Google Scholar 

  16. Ma, Y.L., Li, B.Q.: Bifurcation solitons and breathers for the nonlocal Boussinesq equations. Appl. Math. Lett. 124, 107677 (2022)

    Article  MATH  Google Scholar 

  17. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Novel bifurcation solitons for an extended Kadomtsev-Petviashvili equation in fluids. Phys. Lett. A 413, 127585 (2021)

    Article  MATH  Google Scholar 

  18. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new (3+ 1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Math. Comput. Simul. 187, 505–519 (2021)

    Article  MATH  Google Scholar 

  19. Bekir, A., Aksoy, E.: Exact solutions of extended shallow water wave equations by Exp-function method. Int. J. Numer. Method. H. 23, 305–319 (2013)

    Article  MATH  Google Scholar 

  20. Bekir, A., Aksoy, E.: Exact Solutions of Shallow Water Wave Equations by Using the (G’/G)-Expansion Method. Wave. Random Complex 22, 317–331 (2012)

    Article  MATH  Google Scholar 

  21. Bekir, A., Shehata Maha, S.M., Zahran Emad, H.M.: Comparison between the exact solutions of three distinct shallow water equations using the painleve approach and its numerical solutions. Rus. J. Nonlin. Dyn. 16, 463–477 (2020)

    MATH  Google Scholar 

  22. Yusufoglu, E., Bekir, A.: Exact Solutions of Coupled Nonlinear Evolution Equations. Chaos Solit. Fract. 37, 842–848 (2008)

    Article  MATH  Google Scholar 

  23. Bekir, A., Aksoy, E., Cevikel, A.C.: Exact solutions of nonlinear time fractional partial differential equations by sub-equation method. Math. Method. Appl. Sci. 38, 2779–2784 (2015)

    Article  MATH  Google Scholar 

  24. Liu, S.H., Tian, B.: Singular soliton, shock-wave, breather-stripe soliton, hybrid solutions and numerical simulations for a (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada system in fluid mechanics. Nonlinear Dyn. 108, 2471–2482 (2022)

    Article  Google Scholar 

  25. Cheng, C.D., Tian, B., Zhang, C.R., Zhao, X.: Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid. Nonlinear Dyn. 105, 2525–2538 (2021)

    Article  Google Scholar 

  26. Shen, Y., Tian, B., Liu, S.H., Zhou, T.Y.: Studies on certain bilinear form, N-soliton, higher-order breather, periodic-wave and hybrid solutions to a (3+1)-dimensional shallow water wave equation with time-dependent coefficients. Nonlinear Dyn. 108, 2447–2460 (2022)

  27. Cheng, C.D., Tian, B., Ma, Y.X., Zhou, T.Y., Shen, Y.: Pfaffian, breather and hybrid solutions for a (2+1)-dimensional generalized nonlinear system in fluid mechanics and plasma physics. Phys. Fluids 34, 115132 (2022)

  28. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417–2428 (2022)

    Article  Google Scholar 

  29. Li, L.Q., Gao, Y.T., Yu, X., Deng, G.F., Ding, C.C.: Gramian solutions and solitonic interactions of a (2+1)-dimensional Broer-Kaup-Kupershmidt system for the shallow water. Int. J. Numer. Method. H. 32, 2282–2298 (2022)

    Article  Google Scholar 

  30. Kassem, M.M., Rashed, A.S.: N-solitons and cuspon waves solutions of (2+1)-dimensional Broer-Kaup-Kupershmidt equations via hidden symmetries of Lie optimal system. Chin. J. Phys. 57, 90–104 (2019)

    Article  Google Scholar 

  31. Yamgoué, S.B., Deffo, G.R., Pelap, F.B.: A new rational sine-Gordon expansion method and its application to nonlinear wave equations arising in mathematical physics. Eur. Phys. J. Plus 134, 380 (2019)

    Article  Google Scholar 

  32. Ma, Z.Y., Fei, J.X., Du, X.Y.: Symmetry reduction of the (2+1)-dimensional modified dispersive water-wave system. Commun. Theor. Phys. 64, 127–132 (2015)

    Article  MATH  Google Scholar 

  33. Zhao, Z.L., Han, B.: On optimal system, exact solutions and conservation laws of the Broer-Kaup system. Eur. Phys. J. Plus 130, 223 (2015)

    Article  Google Scholar 

  34. Cao, X.Q., Guo, Y.N., Hou, S.H., Zhang, C.Z., Peng, K.C.: variational principles for two kinds of coupled nonlinear equations in shallow water. Symmetry-Basel 12, 850 (2020)

    Article  Google Scholar 

  35. Ying, J.P., Lou, S.Y.: Abundant coherent structures of the (2+1)-dimensional Broer-Kaup-Kupershmidt equation. Z. Naturforsch. A 56, 619–625 (2000)

    Article  Google Scholar 

  36. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Article  Google Scholar 

  37. Li, B.Q.: Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. Appl. Math. Lett. 112, 106822 (2021)

    Article  MATH  Google Scholar 

  38. Li, B.Q., Ma, Y.L.: Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation. Nonlinear Dyn. 102, 1787–1799 (2020)

    Article  Google Scholar 

  39. Yang, D.Y., Tian, B., Tian, H.Y., Wei, C.C., Shan, W.R., Jiang, Y.: Darboux transformation, localized waves and conservation laws for an M-coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chaos Solitons Fract. 156, 111719 (2022)

    Article  Google Scholar 

  40. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation, degenerate and bound-state solitons for a Laksmanan-Porsezian-Daniel equation in a ferromagnetic spin chain. Chaos Solitons Fract. 162, 112399 (2022)

    Article  Google Scholar 

  41. Wang, M., Tian, B., Zhou, T.Y.: Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain. Chaos Solitons Fract. 152, 111411 (2021)

    Article  MATH  Google Scholar 

  42. Gao, X.Y., Guo, Y.J., Shan, W.R., Du, Z., Chen, Y.Q.: Magnetooptic studies on a ferromagnetic material via an extended (3+1)-dimensional variable-coefficient modified Kadomtsev-Petviashvili system. Qual. Theory Dyn. Syst. 21, 153 (2022)

    Article  MATH  Google Scholar 

  43. Zhou, T.Y., Tian, B.: Auto-Bäcklund transformations, Lax pair, bilinear forms and bright solitons for an extended (3+1)-dimensional nonlinear Schrödinger equation in an optical fiber. Appl. Math. Lett. 133, 108280 (2022)

    Article  MATH  Google Scholar 

  44. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Nonlinear differential-difference hierarchy relevant to the Ablowitz-Ladik equation: Lax pair, conservation laws, N-fold Darboux transformation and explicit exact solutions. Chaos Solitons Fract. 164, 112460 (2022)

    Article  Google Scholar 

  45. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Liu, F.Y., Jia, T.T.: Darboux transformation, bright and dark-bright solitons of an N-coupled high-order nonlinear Schrödinger system in an optical fiber. Mod. Phys. Lett. B 36, 2150568 (2022)

    Article  Google Scholar 

  46. Yang, D.Y., Tian, B., Hu, C.C., Zhou, T.Y.: The generalized Darboux transformation and higher-order rogue waves for a coupled nonlinear Schrödinger system with the four-wave mixing terms in a birefringent fiber. Eur. Phys. J. Plus 137, 1213 (2022)

    Article  Google Scholar 

  47. Gao, X.Y., Guo, Y.J., Shan, W.R., Zhou, T.Y.: Singular manifold, auto-Bäcklund transformations and symbolic-computation steps with solitons for an extended three-coupled Korteweg-de Vries system. Int. J. Geom. Methods Mod. Phys. (2022) in press. https://doi.org/10.1142/S0219887822502292

  48. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

    Article  Google Scholar 

  49. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: N-fold Darboux transformation and solitonic interactions for the Kraenkel-Manna-Merle system in a saturated ferromagnetic material. Nonlinear Dyn. (2022) in press. https://doi.org/10.1007/s11071-022-07959-6

  50. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132, 108094 (2022)

    Article  MATH  Google Scholar 

  51. Yang, D.Y., Tian, B., Hu, C.C., Liu, S.H., Shan, W.R., Jiang, Y.: Conservation laws and breather-to-soliton transition for a variable-coefficient modified Hirota equation in an inhomogeneous optical fiber. Wave. Random Complex (2022) in press. https://doi.org/10.1080/17455030.2021.1983237

  52. Zhou, T.Y., Tian, B., Zhang, C.R., Liu, S.H.: Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in an electron-positron plasma. Eur. Phys. J. Plus 137, 912 (2022)

    Article  Google Scholar 

  53. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Hu, L., Li, L.Q.: Binary Darboux transformation, solitons, periodic waves and modulation instability for a nonlocal Lakshmanan-Porsezian-Daniel equation. Wave Motion 114, 103036 (2022)

    Article  Google Scholar 

  54. Yang, D.Y., Tian, B., Wang, M., Zhao, X., Shan, W.R., Jiang, Y.: Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or plasma. Nonlinear Dyn. 107, 2657–2666 (2022)

    Article  Google Scholar 

  55. Gao, X.Y., Guo, Y.J., Shan, W.R.: Symbolic computation on the long gravity water waves: scaling transformations, bilinear forms, N solitons and auto-Bäcklund transformation for the variable-coefficient variant Boussinesq system. Chaos Solitons Fract. 152, 111392 (2021)

    Article  MATH  Google Scholar 

  56. Gao, X.Y., Guo, Y.J., Shan, W.R.: Looking at an open sea via a generalized (2+1)-dimensional dispersive long-wave system for the shallow water: scaling transformations, hetero-Bäcklund transformations, bilinear forms and N solitons. Eur. Phys. J. Plus 136, 893 (2021)

    Article  Google Scholar 

  57. Gao, X.Y., Guo, Y.J., Shan, W.R., Zhou, T.Y., Wang, M., Yang, D.Y.: In the atmosphere and oceanic fluids: scaling transformations, bilinear forms, Bäcklund transformations and solitons for a generalized variable-coefficient Korteweg-de Vries-modified Korteweg-de Vries equation. China Ocean Eng. 35, 518–530 (2021)

    Article  Google Scholar 

  58. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)

    Article  MATH  Google Scholar 

  59. Lambert, F., Loris, I., Springael, J., Willox, R.: On a direct bilinearization method: Kaup’s higher-order water wave equation as a modified nonlocal Boussinesq equation. J. Phys. A 27, 5325 (1994)

    Article  MATH  Google Scholar 

  60. Rodrigo-Ilarri, J., Rodrigo-Clavero, M.E., Cassiraga, E., Ballesteros-Almonacid, L.: Assessment of groundwater contamination by terbuthylazine using vadose zone numerical models. Case study of Valencia province (Spain). Int. J. Environ. Res. Public Health 17, 3280 (2020)

    Article  Google Scholar 

  61. Pu, H.F., Wang, K., Qiu, J.W., Chen, X.L.: Large-strain numerical solution for coupled self-weight consolidation and contaminant transport considering nonlinear compressibility and permeability. Appl. Math. Model. 88, 916–932 (2020)

    Article  MATH  Google Scholar 

  62. Clarkson, P., Kruskal, M.: New similarity reductions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

    Article  MATH  Google Scholar 

  63. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

    Article  MATH  Google Scholar 

  64. Gao, X.T., Tian, B., Feng, C.H.: In oceanography, acoustics and hydrodynamics: investigations on an extended coupled (2+1)-dimensional Burgers system. Chin. J. Phys. 77, 2818–2824 (2022)

    Article  Google Scholar 

  65. Gao, X.Y., Guo, Y.J., Shan, W.R.: Thinking about the oceanic shallow water via a generalized Whitham-Broer-Kaup-Boussinesq-Kupershmidt system. Chaos Solitons Fract. 164, 112672 (2022)

    Article  Google Scholar 

  66. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

    Article  MATH  Google Scholar 

  67. Gao, X.Y., Guo, Y.J., Shan, W.R.: Similarity reductions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in nonlinear optics, fluid mechanics and plasma physics. Appl. Comput. Math. 20, 421–429 (2021)

    MATH  Google Scholar 

  68. Ince, E.: Ordinary Differential Equations. Dover, New York (1956)

    Google Scholar 

  69. Zwillinger, D.: Handbook of Differential Equations, 3rd edn. Acad, San Diego (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11871116 and 11772017, and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A11. X. Y. Gao also thanks the National Scholarship for Doctoral Students of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Jiang Guo or Wen-Rui Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XY., Guo, YJ. & Shan, WR. Symbolically Computing the Shallow Water via a (2+1)-Dimensional Generalized Modified Dispersive Water-Wave System: Similarity Reductions, Scaling and Hetero-Bäcklund Transformations. Qual. Theory Dyn. Syst. 22, 17 (2023). https://doi.org/10.1007/s12346-022-00684-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00684-w

Keywords

Mathematics Subject Classification

Navigation