Skip to main content
Log in

Existence of Periodic Solutions for the Forced Pendulum Equations of Variable Length

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This article investigates the forced pendulum equations of variable length

$$\begin{aligned} x''+k x' + a(t) \sin x= e(t), \end{aligned}$$

where a(t), e(t) are continuous T-periodic functions, \(k \in {\mathbb {R}}\) is a constant. Under suitable assumptions on the a(t), e(t) and T, we prove the existence of T-periodic solutions to the forced pendulum equations using Mawhin’s continuation theorem. Finally, some specific examples and numerical simulations are given to illustrate the applicability of the conclusions of this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Amster, P., Mariani, M.C.: Some results on the forced pendulum equation. Nonlinear Anal. 68(7), 1874–1880 (2008)

    Article  MATH  Google Scholar 

  2. Amster, P., Mariani, M.C.: Periodic solutions of the forced pendulum equation with friction. Acad. Roy. Belg. Bull. Cl. Sci. 14, 311–320 (2003)

    Google Scholar 

  3. Belyakov, A., Seyranian, A.P., Ortega, R.: A counterexample for the damped pendulum equation. Bull. Classe des Sci. Ac. Roy. 73(1), 405–409 (1987)

    Article  Google Scholar 

  4. Cid, J.A.: On the existence of periodic oscillations for pendulum-type equations. Adv. Nonlinear Anal. 10(1), 121–130 (2021)

    Article  MATH  Google Scholar 

  5. Belyakov, A.O., Seyraniana, A.P., Luongo, A.: Dynamics of the pendulum with periodically varying length. Phys. D 238(16), 1589–1597 (2009)

    Article  MATH  Google Scholar 

  6. Fournier, G., Mawhin, J.: On periodic solutions of forced pendulum-like equations. J. Differ. Equ. 60(3), 381–395 (1985)

    Article  MATH  Google Scholar 

  7. Gaines, R.E., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

  8. Han, X., Yang, H.: Existence and multiplicity of periodic solutions for a class of second-order ordinary differential equations. Monatsh. Math. 193(4), 829–843 (2020)

    Article  MATH  Google Scholar 

  9. Hamel, G.: Ueber erzwungene Schingungen bei endlischen Amplituden. Math. Ann. 86(1), 1–13 (1922)

    Article  Google Scholar 

  10. Hakl, R., Torres, P.J., Zamora, M.: Periodic solutions of singular second order differential equations: the repulsive case. Topol. Methods Nonlinear Anal. 39(2), 199–220 (2012)

    MATH  Google Scholar 

  11. Hatvani, L.: Existence of periodic solutions of pendulum-like ordinary and functional differential equations. Electron. J. Qual. Theory Differ. Equ. 80, 1–10 (2020)

    Article  MATH  Google Scholar 

  12. Li, Y.: Oscillatory periodic solutions of nonlinear second order ordinary differential equations. Acta Math. Sin. Engl. Ser. 21(3), 491–496 (2005)

    Article  MATH  Google Scholar 

  13. Liang, Z., Zhou, Z.: Stable and unstable periodic solutions of the forced pendulum of variable length. Taiwanese J. Math. 21(4), 791–806 (2017)

    Article  MATH  Google Scholar 

  14. Liang, Z., Yao, Z.: Subharmonic oscillations of a forced pendulum with time-dependent damping. J. Fixed Point Theory Appl. 22(1), 1–10 (2020)

    Article  MATH  Google Scholar 

  15. Lomtatidze, A., Šremr, S., Luongo, A.: On positive periodic solutions to second-order differential equations with a sub-linear non-linearity. Nonlinear Anal. Real World Appl. 57, 103200 (2021)

    Article  MATH  Google Scholar 

  16. Ma, R., Xu, J., Han, X.: Global bifurcation of positive solutions of a second-order periodic boundary value problem with indefinite weight. Nonlinear Anal. 74(10), 3379–3385 (2011)

    Article  MATH  Google Scholar 

  17. Mawhin, J.: Periodic oscillations of forced pendulum-like equations. Lecture Notes in Mathematics 964, 458–476 (1982)

  18. Mawhin, J.: The forced pendulum: a paradigm for nonlinear analysis and dynamical systems. Expo. Math. 6(3), 271–287 (1988)

    MATH  Google Scholar 

  19. Mawhin, J.: Seventy-five Years of global analysis around the forced pendulum equation. Proc. Equ. Diff. 9, 115–145 (1997)

    Google Scholar 

  20. Mawhin, J.: Global results for the forced pendulum equation. Handb. Differ. Equ. 1, 533–589 (2004)

    MATH  Google Scholar 

  21. Ortega, R., Tarallo, M.: Non-continuation of the periodic oscillations of a forced pendulum in the presence of friction. Proc. Am. Math. Soc. 128(9), 2659–2665 (2000)

    Article  MATH  Google Scholar 

  22. Seyranian, A.P.: The swing: parametric resonance. J. Appl. Math. Mech. 68(5), 757–764 (2004)

    Article  Google Scholar 

  23. Seyranian, A.A., Seyranian, A.P.: The stability of an inverted pendulum with a vibrating suspension point. J. Appl. Math. Mech. 70(5), 754–761 (2006)

    Article  Google Scholar 

  24. Torres, P.J.: Periodic oscillations of the relativistic pendulum with friction. Phys. Lett. A 372(42), 6386–6387 (2008)

    Article  MATH  Google Scholar 

  25. Wang, H.: Periodic solutions to non-autonomous second-order systems. Nonlinear Anal. 71(3–4), 1271–1275 (2009)

    Article  MATH  Google Scholar 

  26. Wright, J.A., Bartuccelli, M., Gentile, G.: Comparisons between the pendulum with varying length and the pendulum with oscillating support. J. Math. Anal. Appl. 449(2), 68–71 (2017)

    Article  MATH  Google Scholar 

  27. Yu, J.: The minimal period problem for the classical forced pendulum equation. J. Differ. Equ. 247(2), 672–684 (2009)

    Article  MATH  Google Scholar 

  28. Zevin, A.A., Filonenko, L.A.: Qualitative study of oscillations of a pendulum with periodically varying length and a mathematical model of swing. J. Appl. Math. Mech. 71(6), 989–1003 (2007)

    Article  MATH  Google Scholar 

  29. Zevin, A.A., Pinsky, M.A.: Qualitative analysis of periodic oscillations of an earth satellite with magnetic attitude stabilization. Discrete Contin. Dyn. Syst. 6(2), 293–297 (2000)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors warmly thank the anonymous referee for his/her careful reading of the article and many pertinent remarks that lead to various improvements to this article. The authors thank the help from the editor too. This work is supported by the National Natural Science Foundation of China(No. 12161079) and Natural Science Foundation of Gansu Province(No. 20JR10RA086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Han.

Ethics declarations

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Han, X. Existence of Periodic Solutions for the Forced Pendulum Equations of Variable Length. Qual. Theory Dyn. Syst. 22, 20 (2023). https://doi.org/10.1007/s12346-022-00723-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00723-6

Keywords

Mathematics Subject Classification

Navigation