Skip to main content
Log in

Analysis on the Controllability of Hilfer Fractional Neutral Differential Equations with Almost Sectorial Operators and Infinite Delay via Measure of Noncompactness

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we formulate the new set of sufficient conditions for the controllability of Hilfer fractional neutral differential systems with almost sectorial operator and infinite delay. Firstly, we show the controllability of the system using the MNC and the M\(\ddot{o}\)nch’s fixed point theorem. Finally, we extend the results to the controllability of the system with nonlocal conditions, and some applications are provided to demonstrate how the major results might be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, R.P., Lakshmikanthan, V., Nieto, J.J.: On the concept of solution for fractional differential equations with uncertainty. Nonlinear Anal. TMA 72(6), 2859–2862 (2010)

  2. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations. Springer International Publishing AG, Inclusions and Inequalities (2017)

  3. Balachandran, K., Sakthivel, R.: Controllability of integro-differential systems in Banach spaces. Appl. Math. Comput. 118, 63–71 (2001)

    MATH  Google Scholar 

  4. Banas, J., Goebel, K.: Measure of noncompactness in Banach spaces. In: Lecture Notes in Pure and Applied Mathematics, Dekker, New York (1980)

  5. Bedi, P., Kumar, A., Abdeljawad, T., Khan, Z.A., Khan, A.: Existence and approximate controllability of Hilfer fractional evolution equations with almost sectorial operators. Adv. Differ. Equ. 615, 1–15 (2020)

    MATH  Google Scholar 

  6. Byszewski, L.: Theorems about existence and uniqueness of a solutions of semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162(2), 494–505 (1991)

    Article  MATH  Google Scholar 

  7. Byszewski, L., Akca, H.: On a mild solution of semilinear functional differential evolution nonlocal problem. J. Math. Stoch. Anal. 10(3), 265–271 (1997)

    Article  MATH  Google Scholar 

  8. Chang, Y.K.: Controllability of impulsive differential systems with infinite delay in Banach spaces. Chaos Solit. Fractals 33, 1601–1609 (2007)

    Article  MATH  Google Scholar 

  9. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: A note on approximate controllability for nonlocal fractional evolution stochastic integrodifferential inclusion of order \(r\in (1,2)\) with delay. Chaos Solit. Fractals 153, 111565 (2021)

    Article  MATH  Google Scholar 

  10. Dineshkumar, C., Udhayakumar, R.: New results concerning to approximate controllability of Hilfer fractional neutral stochastic delay integro-differential system. Numer. Methods Partial Differ. Equ. 1–19 (2020). https://doi.org/10.1002/num.22567.

  11. Furati, K.M., Kassim, M.D., Tatar, N.E.: Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput. Math. Appl. 641, 616–626 (2012)

    MATH  Google Scholar 

  12. Gu, H., Trujillo, J.J.: Existence of integral solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput. 257, 344–354 (2015)

    MATH  Google Scholar 

  13. Hilfer, R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  14. Jaiswal, A., Bahuguna, D.: Hilfer fractional differential equations with almost sectorial operators. Differ. Equ. Dyn. Syst., pp. 1–17 (2020). https://doi.org/10.1007/s12591-020-00514-y.

  15. Ji, S., Li, G., Wang, M.: Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput. 217, 6981–6989 (2011)

    MATH  Google Scholar 

  16. Karthikeyan, K., Debbouche, A., Torres, D.F.M.: Analysis of Hilfer fractional integro-differential equations with almost sectorial operators. Fractal Fract. 5(1), 1–14 (2021)

    Article  Google Scholar 

  17. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nissar, K.S.: A note on approximate controllability of the Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 44(6), 4428–4447 (2021)

    Article  MATH  Google Scholar 

  18. Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability on Hilfer fractional neutral differential equations with infinite delay via measure of noncompactness. Chaos Solit. Fractals, 139, 1–9. 110035 (2020)

  19. Khaminsou, B., Thaiprayoon, C., Sudsutad, W., Jose, S.A.: Qualitative analysis of a proportional Caputo fractional Pantograph differential equation with mixed nonlocal conditions. Nonlinear Funct. Anal. Appl. 26(1), 197–223 (2021)

    MATH  Google Scholar 

  20. Lakshmikantham, V., Vatsala, A.S.: Basic theory of fractional differential equations. Nonlinear Anal.: Theory Methods Appl. 69(8), 2677–2682 (2008)

    Article  MATH  Google Scholar 

  21. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  22. \(M\ddot{o}nch\), H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal.: Theory Methods Appl., 4(5), 985–999 (1980)

  23. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    MATH  Google Scholar 

  24. Periago, F., Straub, B.: A functional calculus for almost sectorial operators and applications to abstract evolution equations. J. Evol. Equ. 2, 41–62 (2002)

    Article  MATH  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  26. Sakthivel, R., Ganesh, R., Anthoni, S.M.: Approximate controllability of fractional nonlinear differential inclusions. Appl. Math. Comput. 225, 708–717 (2013)

    MATH  Google Scholar 

  27. Singh, V.: Controllability of Hilfer fractional differential systems with non-dense domain. Numer. Funct. Anal. Optim. 40(13), 1572–1592 (2019)

    Article  MATH  Google Scholar 

  28. Sivasankar, S., Udhayakumar, R.: Hilfer fractional neutral stochastic Volterra integro-differential inclusions via almost sectorial operators. Mathematics 10(12), 2024 (2022). https://doi.org/10.3390/math10122074

    Article  Google Scholar 

  29. Varun Bose, C.S., Udhayakumar, R.: A note on the existence of Hilfer fractional differential inclusions with almost sectorial operators. Math. Methods Appl. Sci., 45, 2530–2541 (2022)

  30. Varun Bose, C. B. S., Udhayakumar, R.: Existence of mild solutions for Hilfer fractional neutral integro-differential inclusions via almost sectorial operators. Fractal Fract., 6(532), (2022). https://doi.org/10.3390/fractalfract.6090532

  31. Vijayakumar, V., Ravichandran, C., Nisar, K.S., Kucche, K.D.: New discussion on approximate controllability results for fractional Sobolev type Volterra–Fredholm integro-differential systems of order 1 \(<\) r \(<\) 2. Numer. Methods Partial Differ. Equ. 1–19 (2021). https://doi.org/10.1002/num.22772

  32. Wang, J.R., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. J. Optim. Theory Appl. 154(1), 292–302 (2012)

    Article  MATH  Google Scholar 

  33. Yang, M., Wang, Q.: Existence of mild solutions for a class of Hilfer fractional evolution equations with nonlocal conditions. Fract. Calc. Appl. Anal. 20(3), 679–705 (2017)

    Article  MATH  Google Scholar 

  34. Yang, M., Wang, Q.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions. Math. Methods Appl. Sci. 40, 1126–1138 (2017)

    Article  MATH  Google Scholar 

  35. Zhang, L., Zhou, Y.: Fractional Cauchy problems with almost sectorial operators. Appl. Math. Comput. 257, 145–157 (2014)

    MATH  Google Scholar 

  36. Zhou, M., Li, C., Zhou, Y.: Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators. Axioms 11(2), 1–13 (2022). https://doi.org/10.3390/axioms11040144

    Article  Google Scholar 

  37. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  38. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Elsevier, New York (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Udhayakumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, C.S.V., Udhayakumar, R. Analysis on the Controllability of Hilfer Fractional Neutral Differential Equations with Almost Sectorial Operators and Infinite Delay via Measure of Noncompactness. Qual. Theory Dyn. Syst. 22, 22 (2023). https://doi.org/10.1007/s12346-022-00719-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00719-2

Keywords

Mathematics Subject Classification

Navigation