Skip to main content
Log in

Well-Posedness of Inverse Sturm–Liouville Problem with Fractional Derivative

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We have given the inverse nodal problem for the fractional Sturm–Liouville (S–L) problem and the stability for this problem. First of all, we have shown asymptotic forms for nodal parameters and by them, the potential function can be reconstructed with a limit of nodal parameters. We proved that this limit exists. We also gave well-posedness of the problem in the rest of study. We have basically shown that the set of potential functions satisfying the condition \(\int _{0}^{\pi }q(t)d_{\alpha }t<\infty \) is homeomorphic to the space of quasi nodal sequences. Although the results given in the paper were given for the classical derivative of S–L the problem, the results here are different and more general than the previous results because they contain the fractional derivative. If \(\alpha =1\), the results coincide with the results given for classical derivative problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdeljawad, T.: On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)

    Article  MATH  Google Scholar 

  2. Al-Refai1 M. and Abdeljawad T.(2017) Fundamental results of conformable Sturm–Liouville eigenvalue problems, Complexity, , Article ID 3720471, 7

  3. Podlubny, I.: Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press, New York (1999)

    MATH  Google Scholar 

  4. Kvitsinskii, A.A.: Fractional integrals and derivatives: theory and applications. Teor. Mater. Fiz 3, 397–414 (1993)

    Google Scholar 

  5. Chen, X.F., Cheng, Y.H., Law, C.K.: Reconstructing potentials from zeros of one eigenfunction Trans. Amer. Math. Soc. 363, 4831–4851 (2011)

    Article  MATH  Google Scholar 

  6. Chen, Y.T., Cheng, Y.H., Law, C.K., Tsay, J.: L\( ^{1}\) convergence of the reconstruction formula for the potential function. Proc. Am. Math. Soc. 130(8), 2319–2324 (2002)

    Article  MATH  Google Scholar 

  7. Gesztesy, F., Simon, B.: Inverse spectral analysis with partial information on the potential, II. The case of discrete spectrum. Trans. Am. Math. Soc. 352, 2765–2787 (2000)

    Article  MATH  Google Scholar 

  8. Keskin, B.: Inverse problems for one dimensional fractional dirac type integro differential system. Inverse Probl. 36, 065001 (2020). https://doi.org/10.1088/1361-6420/ab7e03

    Article  MATH  Google Scholar 

  9. Neamaty, A., Khalili, Y.: Determination of a differential operator with discontinuity from interior spectral data Inv. Prob. Sci. Eng. 22, 1002–1008 (2014)

    MATH  Google Scholar 

  10. Pivovarchik, V.: Direct and inverse three-point Sturm–Liouville problems with parameter-dependent boundary conditions. Asymptot. Anal. 26, 219–238 (2001)

    MATH  Google Scholar 

  11. Buterin, S.A., Shieh, C.T.: Incomplete inverse spectral and nodal problems for differential pencils. Res. Math. 62, 167–179 (2012)

    Article  MATH  Google Scholar 

  12. Çakmak, Y.: Inverse nodal problem for a conformable fractional diffusion operator. Inverse Probl. Sci. Eng. 29(9), 1308–1322 (2021)

    Article  MATH  Google Scholar 

  13. Cheng, Y.H., Law, C.K., Tsay, J.: Remarks on a new inverse nodal problem. J. Math. Anal. Appl. 248, 145–155 (2000)

    Article  MATH  Google Scholar 

  14. Goktas, S., Koyunbakan, H., Gulsen, T.: Inverse nodal problem for polynomial pencil of Sturm–Liouville operator. Math. Methods Appl. Sci. 41, 7576–7582 (2018)

    Article  MATH  Google Scholar 

  15. Gulsen, T., Yilmaz, E., Akbarpoor, A.: Numerical investigation of the inverse nodal problem by Chebyshev interpolation method. Therm. Sci. 22, 123–136 (2018)

    Article  Google Scholar 

  16. Guo, Y., Wei, G.: Inverse problems: dense nodal subset on an interior subinterval. J. Differ. Equ. 255, 2002–2017 (2013)

    Article  MATH  Google Scholar 

  17. Hald, O., McLaughlin, J.R.: Solution of the inverse nodal problems. Inverse Probl. 5, 307–347 (1989)

    Article  MATH  Google Scholar 

  18. Law, C.K., Tsay, J.: On the well-posedness of the inverse nodal problem. Inverse Probl. 17(5), 1493–1512 (2001)

    Article  MATH  Google Scholar 

  19. Pinasco, J.P., Scarola, C.: A nodal inverse problem for second order Sturm–Liouville operators with indefinite weights. Appl. Math. Comput. 256, 819–830 (2015)

    MATH  Google Scholar 

  20. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MATH  Google Scholar 

  21. Wang, Y.P., Yurko, V.: On the inverse nodal problems for discontinuous Sturm–Liouville operators. J. Differ. Equ. 260, 4086–4109 (2016)

    Article  MATH  Google Scholar 

  22. Yang, C.F.: Inverse nodal problems of discontinuous Sturm–Liouville operator. J. Differ. Equ. 254, 1992–2014 (2013)

    Article  MATH  Google Scholar 

  23. Yang, C.F.: An inverse problem for a differential pencil using nodal points as data. Isr. J. Math. 204, 431–446 (2014)

    Article  MATH  Google Scholar 

  24. Koyunbakan, H.: Inverse nodal problem for p Laplacian energy dependent Sturm Liouville equation. Bound. Value Probl. 2013, 272 (2013)

    Article  MATH  Google Scholar 

  25. Yang, X.F.: A new inverse nodal problem. J. Differ. Equ. 169, 633–653 (2001)

    Article  MATH  Google Scholar 

  26. McLaughlin, J.R.: Inverse spectral theory using nodal points as data, a uniqueness result. J. Diff. Equ. 73, 354–362 (1988)

    Article  MATH  Google Scholar 

  27. Atangana, A., Baleanu, D., Alsaedi, A.: New properties of conformable derivative. Open Math. 13, 889–898 (2015)

    Article  MATH  Google Scholar 

  28. Avci, D., Iskender Eroglu, B., Ozdemir, N.: The Dirichlet problem of a conformable advection diffusion equation. Therm. Sci. 21, 9–18 (2017)

    Article  MATH  Google Scholar 

  29. Baleanu, D., Guvenc, Z.B., Machado, J.T.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2010)

    Book  MATH  Google Scholar 

  30. Benkhettou, N., Hassani, S., Torres, D.F.M.: A Fractional calculus on arbitrary time scales. J. King. Saud. Univ. Sci. 28, 93–98 (2016)

    Article  Google Scholar 

  31. Khalil, R., Al Horani, M., Yousef, A., et al.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MATH  Google Scholar 

  32. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amester Dam (2006)

    MATH  Google Scholar 

  33. Klimek, M., Agrawal, O.P.: Fractional Sturm–Liouville problem. Comput. Math. Appl. 66, 795–812 (2013)

    Article  MATH  Google Scholar 

  34. Miller, K.S.: An Introduction to Fractional Calculus and Fractional Differential Equations J. Wiley, New York (1993)

    MATH  Google Scholar 

  35. Law, C.K., Lian, W.C., Wang, W.C.: The inverse nodal problem and Ambarzumyan problem for the p-Laplacian. Proc. R. Soc. Edingb. 139, 1261–1273 (2009)

    Article  MATH  Google Scholar 

  36. Mortazaas, H., Jodayree, A.A.: Trace formula and inverse nodal problem for a fractional Sturm–Liouville problem. Inverse Probl. Sci. Eng. 28, 524–555 (2020)

    Article  MATH  Google Scholar 

  37. Ortigueira, M.D., Tenreiro Machado, J.A.: What is a fractional derivative? J. Comput. Phys. 293, 4–13 (2015)

    Article  MATH  Google Scholar 

  38. Rashid, S., Hammouch, Z., Ashraf, R., Baleanu, D., Nisar, K.S.: New quantum estimates in the setting of fractional calculus theory. Adv. Differ. Equ. 2020, 383 (2020)

    Article  MATH  Google Scholar 

  39. Rivero, M., Trujillo, J.J., Velasco, M.P.: A fractional approach to the Sturm–Liouville problem. Centr. Eur. J. Phys. 11, 1246–1254 (2013)

    Google Scholar 

  40. Wang, Y., Zhou, J., Li, Y.: Fractional Sobolev spaces on time scales via conformable fractional calculus and their application to a fractional differential equation on time scales Adv. Math. Phys. 2016(9636491), 1–21 (2016)

    Google Scholar 

  41. Adalar, I., Ozkan, A.S.: Inverse problems for a conformable fractional Sturm–Liouville operator. J. Inverse Ill-Posed Probl. 28(6), 775–782 (2020)

    Article  MATH  Google Scholar 

  42. Klimek, M., Agrawal, O.P.: Fractional Sturm–Liouville problem. Comput. Math. Appl. 66(5), 795–812 (2013)

    Article  MATH  Google Scholar 

  43. Ercan, A., Panakhov, E.S.: Spectral analysis for discontinuous conformable Sturm–Liouville problems with spectral parameter contained in boundary conditions. Appl. Comput. Math. 19(2), 245–254 (2020)

    MATH  Google Scholar 

  44. Bas, E., Metin Turk, F., Ozarslan, R., et al.: Spectral data of conformable Sturm–Liouville direct problems. Anal. Math. Phys. 11, 8 (2021). https://doi.org/10.1007/s13324-020-00428-6

    Article  MATH  Google Scholar 

  45. Wang, W.C.: Some notes on conformable fractional Sturm–Liouville problems. Bound Value Probl. 2021, 103 (2021). https://doi.org/10.1186/s13661-021-01581-y

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors Kamal Shah and Thabet Abdeljawad would like to thank Prince Sultan University for support through TAS research lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thabet Abdeljawad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyunbakan, H., Shah, K. & Abdeljawad, T. Well-Posedness of Inverse Sturm–Liouville Problem with Fractional Derivative. Qual. Theory Dyn. Syst. 22, 23 (2023). https://doi.org/10.1007/s12346-022-00727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00727-2

Keywords

Mathematics Subject Classification

Navigation