Skip to main content
Log in

Multiple Positive Solutions for Fractional Schrödinger–Poisson System with Doubly Critical Exponents

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we study the following fractional Schrödinger–Poisson system

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{s} u+ V(x)u- \phi |u|^{2^{*}_{s}-3}u= |u|^{2^{*}_{s}-2}u+ \lambda f(x), &{} x\in {\mathbb {R}}^3, \\ (-\Delta )^{s} \phi = |u|^{2^{*}_{s}-1}, &{} x\in {\mathbb {R}}^3, \end{array}\right. } \end{aligned}$$

where \(s\in (0,1)\), \(2^{*}_{s}=\frac{6}{3-2s}\), \(\lambda >0\) is a real parameter, f and V satisfy some suitable hypothesis. Via applying the variational methods and mountain pass theorem, we prove that there exists \( \lambda ^{*}>0 \) such that the system has at least two positive solutions for any \(\lambda \in (0,\lambda ^{*})\) which supplements and generalizes the previous results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Landkof, N.: Foundations of Mordern Potrntial Theory. Springer, New York (1972)

    Book  Google Scholar 

  2. Chang, X.J., Wang, Z.Q.: Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian. J. Differ. Equ. 256, 2965–2992 (2014)

    Article  MATH  Google Scholar 

  3. Felmer, P., Quaas, A., Tan, J.G.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  4. Khoutir, S., Chen, H.B.: Existence of infinitely many high energy solutions for a fractional Schrödinger equation in \(\mathbb{R} ^{N}\). Appl. Math. Lett. 61, 156–162 (2016)

    Article  MATH  Google Scholar 

  5. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 249–264 (2002)

    Article  Google Scholar 

  6. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MATH  Google Scholar 

  7. d’Avenia, P., Siciliano, G., Squassina, M.: On fractional Choquard equations. Math. Models Methods Appl. Sci. 25, 1447–1476 (2015)

    Article  MATH  Google Scholar 

  8. Shen, Z.F., Gao, F.S., Yang, M.B.: Ground states for nonlinear fractional Choquard equations with general nonlinearities. Math. Methods Appl. Sci. 39, 4082–4098 (2016)

    Article  MATH  Google Scholar 

  9. Yang, Z.P., Zhao, F.K.: Multiplicity and concentration behaviour of solutions for a fractional Choquard equation with critical growth. Adv. Nonlinear Anal. 10, 732–774 (2021)

    Article  MATH  Google Scholar 

  10. Li, Q.Q., Teng, K.M., Zhang, J.: Ground state solutions for fractional Choquard equations involving upper critical exponent. Nonlinear Anal. 197, 1–11 (2020)

    Article  MATH  Google Scholar 

  11. He, X.M.: Positive solutions for fractional Schrödinger–Poisson systems with doubly critical exponents. Appl. Math. Lett. 120, 1–8 (2021)

    Article  Google Scholar 

  12. Feng, X.J., Yang, X.: Existence of ground state solutions for fractional Schrödinger–Poisson systems with doubly critical Growth. Mediterr. J. Math. 41, 1–14 (2021)

    MATH  Google Scholar 

  13. Pu, Y., Li, H.Y., Liao, J.F.: Ground state solutions for the fractional Schrödinger–Poisson system involving doubly critical exponents. AIMS Math. 7, 18311–18322 (2022)

    Article  Google Scholar 

  14. Qu, S.Q., He, X.M.: On the number of concentrating solutions of a fractional Schrödinger–Poisson system with doubly critical growth. Anal. Math. Phys. 12, 59 (2022)

    Article  MATH  Google Scholar 

  15. Teng, K.M.: Existence of ground state solutions for the nonlinear fractional Schrödinger–Poisson system with critical Sobolev exponent. J. Differ. Equ. 261, 3061–3106 (2016)

    Article  MATH  Google Scholar 

  16. Feng, X.J.: Nontrivial solution for Schrödinger–Poisson equations involving the fractional Laplacian with critical exponent. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM 115, 1–19 (2021)

  17. Feng, X.J.: Ground state solutions for Schrödinger–Poisson systems involving the fractional Laplacian with critical exponent. J. Math. Phys. 60, 1–12 (2019)

    Article  Google Scholar 

  18. Gu, G.Z., Tang, X.H., Shen, J.X.: Multiple solutions for fractional Schrödinger–Poisson system with critical or supercritical nonlinearity. Appl. Math. Lett. 111, 1–7 (2021)

    Article  MATH  Google Scholar 

  19. Huang, W.T., Wang, L.: Ground state solutions of Nehari–Pohozaev type for a fractional Schrödinger–Poisson system with critical exponent. Acta. Math. Sci. 40B, 1064–1080 (2020)

    Article  MATH  Google Scholar 

  20. Gu, G.Z., Tang, X.H., Zhang, Y.P.: Existence of positive solutions for a class of critical fractional Schrödinger–Poisson system with potential vanishing at infinity. Appl. Math. Lett. 99, 1–7 (2020)

    Article  MATH  Google Scholar 

  21. Gao, Z., Tang, X.H., Chen, S.T.: Ground state solutions for a class of nonlinear fractional Schrödinger–Poisson systems with super-quadratic nonlinearity. Chaos Solitons Fractals 105, 189–194 (2017)

    Article  MATH  Google Scholar 

  22. Meng, Y.X., Zhang, X.R., He, X.M.: Ground state solutions for a class of fractional Schrödinger–Poisson system with critical growth and vanishing potentials. Nonlinear Anal. 10, 1328–1355 (2021)

    Article  MATH  Google Scholar 

  23. Chen, M.Y., Li, Q., Peng, S.J.: Bound states for fractional Schrödinger–Poisson system with critical exponent. Discret. Contin. Dyn. Syst. Ser. S 14, 1819–1835 (2021)

    MATH  Google Scholar 

  24. Shen, L.J., Yao, X.H.: Least energy solutions for a class of fractional Schrödinger–Poisson systems. J. Math. Phys. 59(21), 081501 (2018)

    Article  MATH  Google Scholar 

  25. Luo, H.X., Tang, X.H.: Ground state and multiple solutions for the fractional Schrödinger–Poisson system with critical Sobolev exponent. Nonlinear Anal. Real World Appl. 42, 24–52 (2018)

    Article  MATH  Google Scholar 

  26. Liu, Z.S., Zhang, J.J.: Multiplicity and concentration of positive solutions for the fractional Schrödinger–Poisson systems with critical growth. ESAIM Control Optim. Calc. Var. 23, 1515–1542 (2017)

    Article  MATH  Google Scholar 

  27. Yu, Y.Y., Zhao, F.K., Zhao, L.G.: The concentration behavior of ground state solutions for a fractional Schrödinger–Poisson system. Calc. Var. Partial Differ. Equ. 56, Paper No.116, 25 pp (2017)

  28. Teng, K.M., Agarwal, R.: Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger–Poisson system with critical growth. Math. Methods Appl. Sci. 41, 8258–8293 (2018)

    Article  MATH  Google Scholar 

  29. Ji, C.: Ground state sign-changing solutions for a class of nonlinear fractional Schrödinger–Poisson system in \(\mathbb{R} ^3\). Anna. Mat. Pura. Appl. 198, 1563–1579 (2019)

    Article  MATH  Google Scholar 

  30. Liu, H.D.: Positive solutions of an asymptotically periodic Schrödinger–Poisson system with critical exponent. Nonlinear Anal. Real World Appl. 32, 198–212 (2016)

    Article  MATH  Google Scholar 

  31. Li, Y., Li, F., Shi, J.P.: Existence and multiplicity of positive solutions to Schrödinger–Poisson type systems with critical nonlocal term. Calc. Var. Partial Differ. Equ. 56, 1–17 (2017)

    Article  MATH  Google Scholar 

  32. Feng, X.J.: Ground state solution for a class of Schrödinger–Poisson-type systems with partial potential. Z. Angew. Math. Phys. 71, 1–16 (2020)

    Google Scholar 

  33. Li, N., He, X.M.: Existence and multiplicity results for some Schrödinger-Poisson system with critical growth. J. Math. Anal. Appl. 488, 1–35 (2020)

    Article  Google Scholar 

  34. Zhu, L.J., Liao, J.F.: Multiple solutions for a nonhomogeneous Schrödinger–Poisson system with critical exponent. J. Appl. Anal. Comput. 12, 1702–1712 (2022)

    Google Scholar 

  35. Zhu, L.J., Liao, J.F., Liu, J.: Positive ground state solutions for Schrödinger–Poisson system involving a negative nonlocal term and critical exponent. Mediterr. J. Math. 19, Paper No. 246 (2022)

  36. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MATH  Google Scholar 

  37. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MATH  Google Scholar 

  38. Servadei, R., Valdinoci, E.: The Brézis–Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the reviewers for careful reading and helpful suggestions which led to an improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Jiang Wei writes the first manuscript. Liao Jia-Feng completes this manuscipt.

Corresponding author

Correspondence to Jia-Feng Liao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Natural Science Foundation of Sichuan (2022NSFSC1816) and Fundamental Research Funds of China West Normal University (18B015).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Liao, JF. Multiple Positive Solutions for Fractional Schrödinger–Poisson System with Doubly Critical Exponents. Qual. Theory Dyn. Syst. 22, 25 (2023). https://doi.org/10.1007/s12346-022-00726-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00726-3

Keywords

Mathematics Subject Classification

Navigation