Skip to main content
Log in

The Involution Kernel and the Dual Potential for Functions in the Walters’ Family

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

First, we set a suitable notation. Points in \(\{0,1\}^{{\mathbb {Z}}-\{0\}} =\{0,1\}^{\mathbb {N}}\times \{0,1\}^{\mathbb {N}}=\Omega ^{-} \times \Omega ^{+}\), are denoted by \(( y|x) =(...,y_2,y_1|x_1,x_2,...)\), where \((x_1,x_2,...) \in \{0,1\}^{\mathbb {N}}\), and \((y_1,y_2,...) \in \{0,1\}^{\mathbb {N}}\). The bijective map \({\hat{\sigma }}(...,y_2,y_1|x_1,x_2,...)= (...,y_2,y_1,x_1|x_2,...)\) is called the bilateral shift and acts on \(\{0,1\}^{{\mathbb {Z}}-\{0\}}\). Given \(A: \{0,1\}^{\mathbb {N}}=\Omega ^+\rightarrow {\mathbb {R}}\) we express A in the variable x, like A(x). In a similar way, given \(B: \{0,1\}^{\mathbb {N}}=\Omega ^{-}\rightarrow {\mathbb {R}}\) we express B in the variable y, like B(y). Finally, given \(W: \Omega ^{-} \times \Omega ^{+}\rightarrow {\mathbb {R}}\), we express W in the variable (y|x), like W(y|x). By abuse of notation, we write \(A(y|x)=A(x)\) and \(B(y|x)=B(y).\) The probability \(\mu _A\) denotes the equilibrium probability for \(A: \{0,1\}^{\mathbb {N}}\rightarrow {\mathbb {R}}\). Given a continuous potential \(A: \Omega ^+\rightarrow {\mathbb {R}}\), we say that the continuous potential \(A^*: \Omega ^{-}\rightarrow {\mathbb {R}}\) is the dual potential of A, if there exists a continuous \(W: \Omega ^{-} \times \Omega ^{+}\rightarrow {\mathbb {R}}\), such that, for all \((y|x) \in \{0,1\}^{{\mathbb {Z}}-\{0\}}\)

$$\begin{aligned} A^* (y) = \left[ A \circ {\hat{\sigma }}^{-1} + W \circ {\hat{\sigma }}^{-1} - W \right] (y|x). \end{aligned}$$

We say that W is an involution kernel for A. It is known that the function W allows to define a spectral projection in the linear space of the main eigenfunction of the Ruelle operator for A. Given A, we describe explicit expressions for W and the dual potential \(A^*\), for A in a family of functions introduced by P. Walters. Denote by \(\theta : \Omega ^{-} \times \Omega ^{+} \rightarrow \Omega ^{-} \times \Omega ^{+}\) the function \(\theta (...,y_2,y_1|x_1,x_2,...)= (...,x_2,x_1|y_1,y_2,...).\) We say that A is symmetric if \(A^* (\theta (x|y))= A(y|x)= A(x).\) We present conditions for A to be symmetric and to be of twist type. It is known that if A is symmetric then \(\mu _A\) has zero entropy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors declare that data sharing is not applicable to this article as no datasets were generated or analyzed during the current study

References

  1. Baraviera, A., Lopes, A.O., Thieullen, Ph.: A Large Deviation Principle for Gibbs states of Hölder potentials: the zero temperature case. Stoch. Dyn. 6, 77–96 (2006)

    Article  MATH  Google Scholar 

  2. Baraviera, A., Lopes, A.O., Mengue, J.K.: On the selection of subaction and measure for a subclass of Walters’s potentials. Erg. Theo. Dyn. Syst. 33(05), 1338–1362 (2013)

    Article  MATH  Google Scholar 

  3. Baraviera, A., Leplaideur, R., Lopes, A.O.: The potential point of view for renormalization. Stoch. Dyn. 12(4), 1250005 (2012)

    Article  MATH  Google Scholar 

  4. Baraviera, A., Leplaideur, R., Lopes, A.O.: Selection of measures for a potential with two maxima at the zero temperature limit. SIAM J. Appl. Dyn. Syst. 11(1), 243–260 (2012)

    Article  MATH  Google Scholar 

  5. Baraviera, A., Leplaideur, R., Lopes, A. O.: Ergodic optimization, zero temperature limits and the max-plus algebra, mini-course in XXIX Coloquio Brasileiro de Matematica (2013)

  6. Bhattacharya, P., Majumdar, M.: Random Dynamical Systems. Cambridge Univ Press (2007)

  7. Bogomolny, E.B., Carioli, M.: Quantum maps of geodesic flows on surfaces of constant negative curvature, IV International Conference on “Path Integrals from meV to MeV”, Tutzing May, pp. 18–21 (1992)

  8. Cioletti, L., Lopes, A.O.: Correlation inequalities and monotonicity properties of the Ruelle operator. Stoch. Dyn. 19(6), 1950048 (2019)

    Article  MATH  Google Scholar 

  9. Cioletti, L., Lopes, A.O.: Phase transitions in one-dimensional translation invariant systems: a Ruelle operator approach. J. Stat. Phys. 159(6), 1424–1455 (2015)

    Article  MATH  Google Scholar 

  10. Cioletti, L., Lopes, A.O., Stadlbauert, M.: Ruelle operator for continuous potentials and DLR-Gibbs measures. Disc. Cont. Dyn. Syst. A 40(8), 4625–4652 (2020)

    Article  MATH  Google Scholar 

  11. Cioletti, L., Melo, L., Ruviaro, L., Silva, E.A.: On the dimension of the space of harmonic functions on transitive shift spaces. Adv. Math. 385, 107758 (2021)

    Article  MATH  Google Scholar 

  12. Cioletti, L., Denker, M., Lopes, A.O., Stadlbauer, M.: Spectral properties of the Ruelle operator for product type potentials on shift spaces. J. Lond. Math. Society 95(2), 684–704 (2017)

    Article  MATH  Google Scholar 

  13. Cioletti, L., Hataishi, L. Y., Lopes, A. O., Stadlbauert, M.: Spectral triples on thermodynamic formalism and dixmier trace representations of Gibbs measures: theory and examples, arXiv:1804.01362

  14. Contreras, G., Lopes, A. O., Oliveira, E. R.: Ergodic transport theory, periodic maximizing probabilities and the twist condition, modeling, optimization, dynamics and bioeconomy I, Springer Proceedings in Mathematics and Statistics, Vo. 73, Edit. David Zilberman and Alberto Pinto, pp. 183-p219 (2014)

  15. Ferreira, H.H., Lopes, A.O., Oliveira, E.R.: Explicit examples in Ergodic optimization. Sao Paulo J. Math. Sci. 14, 443–489 (2020)

    Article  MATH  Google Scholar 

  16. Fisher, A., Lopes, A.O.: Exact bounds for the polynomial decay of correlation, 1/f noise and the central limit theorem for a non-Hölder Potential. Nonlinearity 14(5), 1071–1104 (2001)

    Article  MATH  Google Scholar 

  17. Gallavotti, G.: Fluctuation patterns and conditional reversibility in nonequilibrium systems. Ann. de l’.H.P. Phys. Theor. 70(4), 429–443 (1999)

    MATH  Google Scholar 

  18. Giulietti, P., Lopes, A.O., Pit, V.: Duality between Eigenfunctions and Eigendistributions of Ruelle and Koopman operators via an integral kernel. Stoch. Dyn. 3, 1660011 (2016)

    Article  MATH  Google Scholar 

  19. Hataishi, L.Y.: Spectral Triples em Formalismo Termodinâmico e Kernel de Involução para potenciais Walters, Master Dissertation. Pos. Grad, Mat - UFRGS (2020)

  20. Hofbauer, F.: Examples for the nonuniquenes of the equilibrium state. Tran. AMS 228, 133–141 (1977)

    Google Scholar 

  21. Jiang, D.-Q., Qian, M., Qian, M.-P.: Entropy production and information gain in axiom-A systems. Commun. Math. Phys. 214, 389–409 (2000)

    Article  MATH  Google Scholar 

  22. Lopes, A.O.: The zeta function, non-differentiability of pressure and the critical exponent of transition. Adv. Math. 101, 133–167 (1993)

    Article  MATH  Google Scholar 

  23. Lopes, A.O., Mengue, J.K., Mohr, J., Souza, R.R.: Entropy and variational principle for one-dimensional Lattice Systems with a general a-priori probability: positive and zero temperature. Erg. Theory Dyn. Syst. 35(6), 1925–1961 (2015)

    Article  MATH  Google Scholar 

  24. Lopes, A.O.: A general renormalization procedure on the one-dimensional lattice and decay of correlations. Stoch. Dyn. 19(01), 1950003 (2019)

    Article  MATH  Google Scholar 

  25. Lopes, A.O., Mengue, J.K.: On information gain, Kullback-Liebler divergence, entropy production and the involution kernel. Disc. Cont. Dyn. Syst. Series A. 42(7), 3593–3627 (2022)

    Article  MATH  Google Scholar 

  26. Lopes, A.O., Thieullen: Eigenfunctions of the Laplacian and associated Ruelle operator. Nonlinearity 21(10), 2239–2254 (2008)

    Article  MATH  Google Scholar 

  27. Lopes, A.O., Oliveira, E.R., Smania, D.: Ergodic transport theory and piecewise analytic subactions for analytic dynamics. Bull. Braz. Math Soc. 43(3), 467–512 (2012)

    Article  MATH  Google Scholar 

  28. Lopes, A.O., Oliveira, E.R., Thieullen, P.H.: The dual potential, the involution kernel and transport in ergodic optimization, Dynamics, Games and Science-International Conference and Advanced School Planet Earth DGS II, Portugal (2013), Edit. J-P Bourguignon, R. Jelstch, A. Pinto and M. Viana, Springer Verlag, pp. 357–398 (2015)

  29. Lopes, A.O., Vargas, V.: Gibbs states and Gibbsian specifications on the space \({\mathbb{R} }^{\mathbb{N} }\). Dyn. Syst. 35(2), 216–241 (2020)

    Article  MATH  Google Scholar 

  30. Lopes, A.O.: Thermodynamic formalism, maximizing probabilities and large deviations, Notes on line - UFRGS

  31. Lopes, A.O.: A first order level-2 phase transition in thermodynamic formalism. J. Stat. Phys. 60(3/4), 395–411 (1990)

    Article  MATH  Google Scholar 

  32. Maes, C., Netocny, K.: Time-reversal and entropy. J. Stat. Phys. 110, 269–310 (2003)

    Article  MATH  Google Scholar 

  33. Mengue, J.K.: Large deviations for equilibrium measures and selection of subaction. Bull. Braz. Math. Soc. 49(1), 17–42 (2018)

    Article  MATH  Google Scholar 

  34. Mitra, T.: Introduction to dynamic optimization theory, optimization and chaos, Editors: M. Majumdar, T. Mitra and K. Nishimura, Studies in economic theory, Springer Verlag

  35. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit strucuture of hyperbolic dynamics. Asterisque 187–188, 1–268 (1990)

    MATH  Google Scholar 

  36. Pollicott, M., Sharp, R.: Large deviations, fluctuations and shrinking intervals. Commun. Math. Phys. 290, 321–334 (2009)

    Article  MATH  Google Scholar 

  37. Ruelle, D.: A generalized detailed balance relation. J. Stat. Phys. 164, 463–471 (2016)

    Article  MATH  Google Scholar 

  38. Ruelle, D.: Positivity of entropy production in nonequilibrium statistical mechanics. J. Stat. Phys. 85, 1–25 (1996)

    Article  MATH  Google Scholar 

  39. Souza, R.R., Vargas, V.: Existence of Gibbs states and maximizing measures on a general one-dimensional lattice system with Markovian structure. Qual. Theory Dyn. Syst. 21(1), 5 (2022)

    Article  MATH  Google Scholar 

  40. Vargas, V.: On involution Kernels and large deviations principles on \(\beta \)-shifts. Discr. Contin. Dyn. Syst. 42(6), 2699–2718 (2022)

    Article  MATH  Google Scholar 

  41. Walters, P.: An introduction to Ergodic theory. Springer-Verlag (1982)

  42. Walters, P.: A natural space of functions for the Ruelle operator theorem. Erg. Theory Dyn. Syst. 27(4), 1323–1348 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The present work is part of the Master Dissertation of L. Y. Hataishi in Prog. Pos. Grad. em. Mat. UFRGS (see [19]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Lopes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hataishi, L.Y., Lopes, A.O. The Involution Kernel and the Dual Potential for Functions in the Walters’ Family. Qual. Theory Dyn. Syst. 22, 26 (2023). https://doi.org/10.1007/s12346-022-00732-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00732-5

Keywords

Mathematics Subject Classification

Navigation