Skip to main content
Log in

Discussion on the Approximate Controllability of Nonlocal Fractional Derivative by Mittag-Leffler Kernel to Stochastic Differential Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This article is primarily targeting the approximate controllability of nonlocal Atangana–Baleanu fractional derivative by Mittag-Leffler kernel to stochastic differential systems. In particular, we obtain a new set of sufficient conditions for the approximate controllability of nonlinear Atangana–Baleanu fractional stochastic differential inclusions under the assumption that the corresponding linear system is approximately controllable. In addition, we establish the approximate controllability results for the Atangana–Baleanu fractional stochastic control system with infinite delay. The results are obtained with the help of the fixed-point theorem for multivalued operators and fractional calculus. At last, an example is included to show the applicability of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Agarwal, R.P., Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems of nonlinear fractional differential equations and inclusions. Acta Appl. Math. 109, 973–1033 (2010)

    Article  MATH  Google Scholar 

  2. Aimene, D., Baleanu, D., Seba, D.: Controllability of semilinear impulsive Atangana–Baleanu fractional differential equations with delay. Chaos Solitons Fractals 128, 51–57 (2019)

    Article  MATH  Google Scholar 

  3. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  MATH  Google Scholar 

  4. Atangana, A., Balneau, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Appl. Heat Transf. Model 20(2), 763–769 (2016)

    Google Scholar 

  5. Atangana, A., Koca, I.: Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals 89, 447–454 (2016)

    Article  MATH  Google Scholar 

  6. Bahaa, G., Hamiaz, A.: Optimality conditions for fractional differential inclusions with nonsingular Mittag Leffler kernel. Adv. Differ. Equ. 257(1), 1–26 (2018)

    MATH  Google Scholar 

  7. Balasubramaniam, P.: Controllability of semilinear noninstantaneous impulsive ABC neutral fractional differential equations. Chaos Solitons Fractals 152, 111276 (2021)

    Article  MATH  Google Scholar 

  8. Bedi, P., Kumar, A., Khan, A.: Controllability of neutral impulsive fractional differential equations with Atangana–Baleanu–Caputo derivatives. Chaos Solitons Fractals 150, 111153 (2021)

    Article  MATH  Google Scholar 

  9. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991)

    Article  MATH  Google Scholar 

  10. Byszewski, L., Akca, H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl. Math. Stoch. Anal. 10(3), 265–271 (1997)

    Article  MATH  Google Scholar 

  11. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  12. Chang, Y.K.: Controllability of impulsive functional differential systems with infinite delay in Banach spaces. Chaos Solitons Fractals 33, 1601–1609 (2007)

    Article  MATH  Google Scholar 

  13. Dhage, B.C.: Multi-valued mappings and fixed points II, Tamkang. J. Math. 37, 27–46 (2006)

    MATH  Google Scholar 

  14. Deimling, K.: Multivalued Differential Equations. De Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  15. Dineshkumar, C., Nisar, K.S., Udhayakumar, R., Vijayakumar, V.: A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions. Asian J. Control 24(5), 2378–2394 (2022)

    Article  MATH  Google Scholar 

  16. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Shukla, A., Nisar, K.S.: New discussion regarding approximate controllability for Sobolev-type fractional stochastic hemivariational inequalities of order \(r\in (1, 2)\). Commun. Nonlinear Sci. Numer. Simul. 116, 106891 (2023)

    Article  MATH  Google Scholar 

  17. Dineshkumar, C., Udhayakumar, R.: Results on approximate controllability of fractional stochastic Sobolev-type Volterra-Fredholm integro-differential equation of order \(1<r<2\). Math. Methods Appl. Sci. 45(11), 6691–6704 (2022)

    Article  Google Scholar 

  18. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A., Abdel-Aty, A.H., Mahmoud, M., Mahmoud, E.E.: A note on existence and approximate controllability outcomes of Atangana-Baleanu neutral fractional stochastic hemivariational inequality. Results Phys. 38, 105647 (2022)

    Article  Google Scholar 

  19. Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., Nisar, K.S.: Controllability discussion for fractional stochastic Volterra-Fredholm integro-differential systems of order \(1 < r < 2\). Int. J. Nonlinear Sci. Numer. Simul. (2022). https://doi.org/10.1515/ijnsns-2021-0479

    Article  MATH  Google Scholar 

  20. N’Guerekata, G.M.: A Cauchy problem for some fractional abstract differential equation with nonlocal conditions. Nonlinear Anal. TMA 70(5), 1873–1876 (2009)

    Article  MATH  Google Scholar 

  21. Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

    Article  MATH  Google Scholar 

  22. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis (Theory). Kluwer Academic Publishers, Dordrecht Boston, London (1997)

    Book  MATH  Google Scholar 

  23. Hu, L., Ren, Y.: Existence results for impulsive neutral stochastic functional integro-differential equations with infinite delays. Acta Appl. Math. 111, 303–317 (2010)

    Article  MATH  Google Scholar 

  24. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  25. Khan, A., Khan, H., Gomez-Aguilar, J.F., Abdeljawad, T.: Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 127, 422–427 (2019)

    Article  MATH  Google Scholar 

  26. Khan, A., Gomez-Aguilar, J.F., Khan, T.S., Khan, H.: Stability analysis and numerical solutions of fractional order HIV/AIDS model. Chaos Solitons Fractals 122, 119–128 (2019)

    Article  MATH  Google Scholar 

  27. Khan, H., Gomez-Aguilar, J.F., Alkhazzan, A., Khan, A.: A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law. Math. Methods Appl. Sci. 43(6), 3786–3806 (2020)

    Article  MATH  Google Scholar 

  28. Khan, H., Gomez-Aguilar, J.F., Abdeljawad, T., Khan, A.: Existence results and stability criteria for ABC-Fuzzy-Volterra integro-differential equation. Fractals 28(8), 2040048 (2020)

    Article  MATH  Google Scholar 

  29. Khan, H., Khan, A., Jarad, F., Shah, A.: Existence and data dependence theorems for solutions of an ABC-fractional order impulsive system. Chaos Solitons Fractals 131, 109477 (2020)

    Article  MATH  Google Scholar 

  30. Kumar, A., Pandey, D.N.: Existence of mild solution of Atangana–Baleanu fractional differential equations with non-instantaneous impulses and with non-local conditions. Chaos Solitons Fractals 132, 1–4 (2020)

    Article  MATH  Google Scholar 

  31. Lasota, A., Opial, Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map. Bull. L’Acad. Pol. Sci. Ser. Sci. Math., Astron. Phys. 13, 781–786 (1965)

    MATH  Google Scholar 

  32. Logeswari, K., Ravichandran, C.: A new exploration on existence of fractional neutral integro-differential equations in the concept of Atangana–Baleanu derivative. Phys. A Stat. Mech. Appl. 544, 123454 (2020)

    Article  MATH  Google Scholar 

  33. Ma, Y.K., Dineshkumar, C., Vijayakumar, V., Udhayakumar, R., Shukla, A., Nisar, K.S.: Approximate controllability of Atangana-Baleanu fractional neutral delay integrodifferential stochastic systems with nonlocal conditions, Ain Shams Eng. J., 101882 (2022)

  34. Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7(9), 1461–1477 (1996)

    Article  MATH  Google Scholar 

  35. Mallika Arjunan, M., Hamiaz, A., Kavitha, V.: Existence results for Atangana–Baleanu fractional neutral integro-differential systems with infinite delay through sectorial operators. Chaos Solitons Fractals 149, 111042 (2021)

    Article  MATH  Google Scholar 

  36. Mallika Arjunan, M., Abdeljawad, T., Kavitha, V., Yousef, A.: On a new class of Atangana–Baleanu fractional Volterra-Fredholm integro-differential inclusions with non-instantaneous impulses. Chaos Solitons Fractals 148, 111075 (2021)

    Article  MATH  Google Scholar 

  37. Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control. Optim. 42, 1604–1622 (2003)

    Article  MATH  Google Scholar 

  38. Mahmudov, N.I., Denker, A.: On controllability of linear stochastic systems. Int. J. Control 73, 144–151 (2000)

    Article  MATH  Google Scholar 

  39. Mohan Raja, M., Vijayakumar, V., Shukla, A., Nisar, K.S., Baskonus, H.M.: On the approximate controllability results for fractional integrodifferential systems of order \(1< r< 2\) with sectorial operators. J. Comput. Appl. Math. 415, 114492 (2022)

    Article  MATH  Google Scholar 

  40. Nisar, K.S., Kaliraj, K., Thilakraj, E., Ravichandran, C.: Controllability analysis for impulsive integro-differential equation via Atangana–Baleanu fractional derivative. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7693

    Article  Google Scholar 

  41. Omaba, M.E., Enyi, C.D.: Atangana–Baleanu time-fractional stochastic integro-differential equation. Part. Differ. Equ. Appl. Math. 4, 100100 (2021)

    Google Scholar 

  42. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, New York, NY (1983)

    MATH  Google Scholar 

  43. Podlubny, I.: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 198, 340 (1999)

    MATH  Google Scholar 

  44. Ravichandran, C., Logeswari, K., Jarad, F.: New results on existence in the frame-work of Atangana–Baleanu derivative for fractional integro-differential equations. Chaos Solitons Fractals 125, 194–200 (2019)

    Article  MATH  Google Scholar 

  45. Ren, Y., Hu, L., Sakthivel, R.: Controllability of impulsive neutral stochastic functional differential inclusions with infinite delay. J. Comput. Appl. Math. 235, 2603–2614 (2011)

    Article  MATH  Google Scholar 

  46. Sakthivel, R., Suganya, S., Anthoni, S.M.: Approximate controllability of fractional stochastic evolution equations. Comput. Math. Appl. 63, 660–668 (2012)

    Article  MATH  Google Scholar 

  47. Sakthivel, R., Ren, Y., Debbouche, A., Mahmudov, N.I.: Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions. Appl. Anal. 95(11), 2361–2382 (2016)

    Article  MATH  Google Scholar 

  48. Shah, A., Khan, R.A., Khan, A., Khan, H., Gomez-Aguilar, J.F.: Investigation of a system of nonlinear fractional order hybrid differential equations under usual boundary conditions for existence of solution. Math. Methods Appl. Sci. 44(2), 1628–1638 (2021)

    Article  MATH  Google Scholar 

  49. Shu, X.B., Lai, Y., Chen, Y.: The existence of mild solutions for impulsive fractional partial differential equations. Nonlinear Anal. 74(5), 2003–2011 (2011)

    Article  MATH  Google Scholar 

  50. Shukla, A., Sukavanam, N., Pandey, D.N.: Controllability of semilinear stochastic control system with finite delay. IMA J. Math. Control. Inf. 35(2), 427–449 (2018)

    MATH  Google Scholar 

  51. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear stochastic control system with nonlocal conditions. Nonlinear Dyn. Syst. Theory 15(3), 321–333 (2015)

    MATH  Google Scholar 

  52. Shukla, A., Sukavanam, N., Pandey, D.N.: Complete controllability of semilinear stochastic systems with delay in both state and control. Math. Rep. (Bucuresti) 18, 247–259 (2016)

    MATH  Google Scholar 

  53. Singh, A., Shukla, A., Vijayakumar, V., Udhayakumar, R.: Asymptotic stability of fractional order \((1,2]\) stochastic delay differential equations in Banach spaces. Chaos Solitans Fractals 150, 111095 (2021)

    Article  MATH  Google Scholar 

  54. Sousa, J.V.C., Oliveira, E.C.: Leibniz type rule: \(\Psi \)-Hilfer fractional derivative, Classical Analysis and ODEs, 1-16 (2018) arXiv:1811.02717

  55. Vijayakumar, V.: Approximate controllability results for abstract neutral integro-differential inclusions with infinite delay in Hilbert spaces. IMA J. Math. Control. Inf. 35(1), 297–314 (2018)

    MATH  Google Scholar 

  56. Vijayakumar, V., Udhayakumar, R., Dineshkumar, C.: Approximate controllability of second order nonlocal neutral differential evolution inclusions. IMA J. Math. Control. Inf. 38(1), 192–210 (2021)

    Article  MATH  Google Scholar 

  57. Vijayakumar, V., Murugesu, R., Poongodi, R., Dhanalakshmi, S.: Controllability of second order impulsive nonlocal Cauchy problem via measure of noncompactness. Mediterr. J. Math. 14(1), 29–51 (2017)

    Article  MATH  Google Scholar 

  58. Vijayakumar, V.: Approximate controllability for a class of second-order stochastic evolution inclusions of Clarke’s subdifferential type. RM 73(1), 1–23 (2018)

    MATH  Google Scholar 

  59. Yan, B.: Boundary value problems on the half-line with impulses and infinite delay. J. Math. Anal. Appl. 259(1), 94–114 (2001)

    Article  MATH  Google Scholar 

Download references

Funding

There are no funders to report for this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Udhayakumar.

Ethics declarations

Conflict of interest

This work does not have any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dineshkumar, C., Udhayakumar, R., Vijayakumar, V. et al. Discussion on the Approximate Controllability of Nonlocal Fractional Derivative by Mittag-Leffler Kernel to Stochastic Differential Systems. Qual. Theory Dyn. Syst. 22, 27 (2023). https://doi.org/10.1007/s12346-022-00725-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00725-4

Keywords

Mathematics Subject Classification

Navigation