Skip to main content
Log in

Approximate Controllability of Non-autonomous Second Order Impulsive Functional Evolution Equations in Banach Spaces

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This article investigates the approximate controllability of second order non-autonomous functional evolution equations involving non-instantaneous impulses and nonlocal conditions. First, we discuss the approximate controllability of second order linear system in detail, which lacks in the existing literature. Then, we derive sufficient conditions for approximate controllability of our system in separable reflexive Banach spaces via linear evolution operator, resolvent operator conditions, and Schauder’s fixed point theorem. Moreover, in this paper, we define proper identification of resolvent operator in Banach spaces. Finally, we provide two concrete examples to validate our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed, H.M., El-Borai, M.M., El Bab, A.O., Ramadan, M.E.: Approximate controllability of non-instantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion. Bound. Value Probl. 2020, 1–25 (2020)

    Article  MATH  Google Scholar 

  2. Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of the non-autonomous impulsive evolution equation with state-dependent delay in Banach space. Nonlinear Anal. Hybrid Syst. 39, 100989 (2020)

    Article  MATH  Google Scholar 

  3. Arora, S., Singh, S., Dabas, J., Mohan, M.T.: Approximate controllability of semilinear impulsive functional differential system with nonlocal conditions. IMA J. Math. Control Inform. 37, 1070–1088 (2020)

    Article  MATH  Google Scholar 

  4. Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Math. Control. Relat. Fields (2020). https://doi.org/10.3934/mcrf.2020049

    Article  MATH  Google Scholar 

  5. Arora, U., Sukavanam, N.: Approximate controllability of second order semilinear stochastic system with nonlocal conditions. Appl. Math. Comput. 258, 111–119 (2015)

    MATH  Google Scholar 

  6. Barbu, V.: Analysis and Control of Nonlinear Infinite Dimensional Systems. Academic Press, New York (1993)

    MATH  Google Scholar 

  7. Barbu, V.: Controllability and Stabilization of Parabolic Equations. Springer, New York (2018)

    Book  MATH  Google Scholar 

  8. Benchohra, M., Henderson, J., Ntouyas, S.: Impulsive Differential Equations and Inclusions. Hindawi Publishing Corporation, New York (2006)

    Book  MATH  Google Scholar 

  9. Bochenek, J.: Existence of the fundamental solution of a second order evolution equation. Ann. Polon. Math. 66, 15–35 (1997)

    Article  MATH  Google Scholar 

  10. Byszewski, L., Lakshmikantham, V.: Theorem about the existence and uniqueness of a solution of a nonlocal abstract Cauchy problem in a Banach space. Appl. Anal. 40, 11–19 (1991)

    Article  MATH  Google Scholar 

  11. Chen, F., Sun, D., Shi, J.: Periodicity in a food-limited population model with toxicants and state dependent delays. J. Math. Anal. Appl. 288, 136–146 (2003)

    Article  MATH  Google Scholar 

  12. Colao, V., Muglia, L., Xu, H.K.: Existence of solutions for a second order differential equation with non-instantaneous impulses and delay. Ann. Mat. 195, 697–716 (2016)

    Article  MATH  Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems, London Mathematical Society Lecture Notes. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  14. Ekeland, I., Turnbull, T.: Infinite-Dimensional Optimization and Convexity. The University of Chicago press, Chicago and London (1983)

    MATH  Google Scholar 

  15. Feckan, M., Wang, J.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal 46, 915–933 (2015)

    MATH  Google Scholar 

  16. Fu, X.: Approximate controllability of semilinear non-autonomous evolution systems with state-dependent delay. Evol. Equ. Control Theory 6, 517–534 (2017)

    Article  MATH  Google Scholar 

  17. Fu, X., Rong, H.: Approximate controllability of semilinear non-autonomous evolutionary systems with nonlocal conditions. Autom. Remote Control 77, 428–442 (2016)

    Article  MATH  Google Scholar 

  18. Grudzka, A., Rykaczewski, K.: On approximate controllability of functional impulsive evolution inclusions in a Hilbert space. J. Optim. Theory Appl. 166, 414–439 (2015)

    Article  MATH  Google Scholar 

  19. Guedda, L.: Some remarks in the study of impulsive differential equations and inclusions with delay. Fixed Point Theory 12, 349–354 (2011)

    MATH  Google Scholar 

  20. Henriquez, H.R.: Existence of solutions of non-autonomous second order functional differential equations with infinite delay. Nonlinear Anal. 74, 3333–3352 (2011)

    Article  MATH  Google Scholar 

  21. Hernández, E., Henriquez, H.R., McKibben, M.A.: Existence results for abstract impulsive second order neutral functional differential equations. Nonlinear Anal. 70, 2736–2751 (2009)

    Article  MATH  Google Scholar 

  22. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)

    Article  MATH  Google Scholar 

  23. Kisyński, J.: On cosine operator functions and one parameter group of operators. Stud. Math. 49, 93–105 (1972)

    Article  MATH  Google Scholar 

  24. Kozak, M.: An abstract second order temporally inhomogeneous linear differential equation II. Univ. lagel. Acta Math. 32, 263–274 (1995)

    MATH  Google Scholar 

  25. Kumar, A., Muslim, M., Sakthivel, R.: Controllability of the second order nonlinear differential equations with non-instantaneous impulses. J. Dyn. Control Syst. 24, 325–342 (2018)

    Article  MATH  Google Scholar 

  26. Kumar, A., Vats, R.K., Kumar, A.: Approximate controllability of second order nonautonomous system with finite delay. J. Dyn. Control Syst. 26, 611–627 (2020)

    Article  MATH  Google Scholar 

  27. Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)

    Book  Google Scholar 

  28. Li, X.J., Yong, J.M.: Optimal Control Theory for Infinite-Dimensional Systems, Systems & Control: Foundations & Applications. Birkhäuser Boston Inc, Boston (1995)

    Google Scholar 

  29. Lin, Y.: Time-dependent perturbation theory for abstract evolution equations of second order. Stud. Math. 130, 263–274 (1998)

    Article  MATH  Google Scholar 

  30. Liang, J., Liu, J.H., Xiao, T.J.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces. Math. Comput. Model. 49, 798–804 (2009)

    Article  MATH  Google Scholar 

  31. Liu, S., Wang, J., O’Regan, D.: Trajectory approximately controllability and optimal control for non-instantaneous impulsive inclusions without compactness Topol. Methods Nonlinear Anal. 58, 19–49 (2021)

    MATH  Google Scholar 

  32. Lunardi, A.: On the linear heat equation with fading memory. SIAM J. Math. Anal. 21, 1213–1224 (1990)

    Article  MATH  Google Scholar 

  33. Mahmudov, N.I.: Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces. SIAM J. Control. Optim. 42, 1604–1622 (2003)

    Article  MATH  Google Scholar 

  34. Mahmudov, N.I., Vijayakumar, V., Murugesu, R.: Approximate controllability of second order evolution differential inclusions in Hilbert spaces. Mediterr. J. Math. 13, 3433–3454 (2016)

    Article  MATH  Google Scholar 

  35. Malik, M., Kumar, A., Feckan, M.: Existence, uniqueness, and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses. J. King Saud Univ. Sci. 30, 204–213 (2018)

    Article  Google Scholar 

  36. Ntouyas, S.K.: Nonlocal initial and boundary value problems: a survey. In: Handbook of Differential Equations: Ordinary Differential Equations, vol. 2, pp. 461–557. Elsevier (2006)

  37. Nunziato, J.W.: On heat conduction in materials with memory. Q. Appl. Math. 29, 187–204 (1971)

    Article  MATH  Google Scholar 

  38. Obrecht, E.: Evolution operators for higher order abstract parabolic equations. Czechoslov. Math. J. 36, 210–222 (1986)

    Article  MATH  Google Scholar 

  39. Obrecht, E.: The Cauchy problem for time-dependent abstract parabolic equations of higher order. J. Math. Anal. Appl. 125, 508–530 (1987)

    Article  MATH  Google Scholar 

  40. Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D.: HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 271, 1582–1586 (1996)

    Article  Google Scholar 

  41. Pierri, M., Henríquez, H.R., Prokopczyk, A.: Global solutions for abstract differential equations with non-instantaneous impulses. Mediterr. J. Math. 49, 1685–1708 (2016)

    Article  MATH  Google Scholar 

  42. Ravikumar, K., Mohan, M.T., Anguraj, A.: Approximate controllability of a nonautonomous evolution equation in Banach spaces. Numer. Algebra Control Optim. (2020)

  43. Sakthivel, R., Anandhi, E.R., Mahmudov, N.I.: Approximate controllability of second order systems with state-dependent delay. Numer. Funct. Anal. Optim. 29, 1347–1362 (2008)

    Article  MATH  Google Scholar 

  44. Serizawa, H., Watanabe, M.: Time-dependent perturbation for cosine families in Banach spaces. Houst. J. Math. 2, 579–586 (1986)

    MATH  Google Scholar 

  45. Singh, S., Arora, S., Mohan, M.T., Dabas, J.: Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evol. Equ. Control Theory (2020). https://doi.org/10.3934/eect.2020103

  46. Shu, L., Shu, X.B., Mao, J.: Approximate controllability and existence of mild solutions for Riemann–Liouville fractional stochastic evolution equations with nonlocal conditions of order \(1<\alpha <2\). Fract. Calc. Appl. Anal. 22, 1086–1112 (2019)

    Article  MATH  Google Scholar 

  47. Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Hungar. 32, 75–96 (1978)

    Article  MATH  Google Scholar 

  48. Travis, C.C., Webb, G.F.: Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houst. J. Math. 3, 555–567 (1977)

    MATH  Google Scholar 

  49. Travis, C.C., Webb, G.F.: Second order differential equations in Banach space. In: Nonlinear Equations in Abstract Spaces, pp. 331–361. Academic Press (1978)

  50. Triggiani, R.: Addendum: a note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control. Optim. 18, 98 (1980)

    Article  MATH  Google Scholar 

  51. Triggiani, R.: A note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control Optim. 15, 407–411 (1977)

    Article  MATH  Google Scholar 

  52. Vijaykumar, V., Udhayakumar, R., Dineshkumar, C.: Approximate controllability of second order nonlocal neutral differential evolution inclusions. IMA J. Math. Control Inform. (2020). https://doi.org/10.1093/imamci/dnaa001

    Article  Google Scholar 

  53. Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equations of mixed type and optimal controls. Optimization 55, 141–156 (2006)

    Article  MATH  Google Scholar 

  54. Yan, Z.: Approximate controllability of partial neutral functional differential systems of fractional order with state-dependent delay. Int. J. Control 85, 1051–1062 (2012)

    Article  MATH  Google Scholar 

  55. Zuazua, E.: Controllability and observability of partial differential equations: some results and open problems. In: Handbook of Differential Equations: Evolutionary Equations, vol. 3, pp. 527–621 (2007)

Download references

Acknowledgements

S. Arora would like to thank Council of Scientific and Industrial Research, New Delhi, Government of India (File No. 09/143(0931)/2013 EMR-I), for financial support to carry out his research work and Department of Mathematics, Indian Institute of Technology Roorkee (IIT Roorkee), for providing stimulating scientific environment and resources. J. Dabas would like to thank the Department of Atomic Energy (DAE), Mumbai, Government of India, project (file no-02011/12/2021 NBHM(R.P)/R &D II/7995).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaydev Dabas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, S., Singh, S., Mohan, M.T. et al. Approximate Controllability of Non-autonomous Second Order Impulsive Functional Evolution Equations in Banach Spaces. Qual. Theory Dyn. Syst. 22, 31 (2023). https://doi.org/10.1007/s12346-022-00718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00718-3

Keywords

Mathematics Subject Classification

Navigation