Skip to main content
Log in

Jacobian-Elliptic-Function and Rogue-Periodic-Wave Solutions of a Fifth-Order Nonlinear Schrödinger Equation in an Optical Fiber

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Optical fiber communication becomes the main research direction in optical networking, computing, telecommunications and data communication. In an optical fiber, a fifth-order nonlinear Schrödinger equation describing the propagation of ultrashort optical pulses is studied in this paper. We give the Jacobian-elliptic-function solutions of that equation as the seed solutions. Based on the periodic background, we combine the nonlinearization of the spectral problem with the Darboux-transformation method to derive the rogue-periodic-wave solutions. When the coefficient \(\alpha _2\) in that equation increases, the period and maximum amplitude of the onefold rogue-dn-periodic wave remain unchanged, while the minimum amplitude of the onefold rogue-dn-periodic wave rises; when the coefficient \(\alpha _1\) or \(\alpha _3\) in that equation increases, the maximum amplitude of the onefold rogue-dn-periodic wave remains unchanged, the minimum amplitude of the onefold rogue-dn-periodic wave decreases, while the period of the onefold rogue-dn-periodic becomes smaller. The conclusion of the twofold rogue-cn-periodic wave is the same as that of the onefold rogue-dn-periodic wave. When the coefficient \(\alpha _1\) in that equation increases, the maximum amplitude of the onefold rogue-cn-periodic wave remains unchanged, the minimum amplitude of the onefold rogue-cn-periodic wave rises, while the period of the onefold rogue-cn-periodic wave becomes smaller; when the coefficient \(\alpha _2\) in that equation increases, the period and maximum amplitude of the onefold rogue-cn-periodic wave remain unchanged, while the minimum amplitude of the onefold rogue-cn-periodic wave decreases; when the coefficient \(\alpha _3\) in that equation increases, the maximum amplitude of the onefold rogue-cn-periodic wave remains unchanged, the minimum amplitude of the onefold rogue-cn-periodic wave decreases, while the period of the onefold rogue-cn-periodic wave becomes smaller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Jacobian elliptic functions are the two-periodic meromorphic functions [28].

References

  1. Kudryashov, N.A.: Solitary wave solutions of hierarchy with non-local nonlinearity. Appl. Math. Lett. 103, 106155 (2020)

    Article  MATH  Google Scholar 

  2. Rajan, M.M., Bhuvaneshwari, B.: Controllable soliton interaction in three mode nonlinear optical fiber. Optik 175, 39 (2018)

    Article  Google Scholar 

  3. Rajan, M.M., Mahalingam, A., Uthayakumar, A.: Nonlinear tunneling of optical soliton in 3 coupled NLS equation with symbolic computation. Ann. Phys. 346, 1 (2014)

    Article  MATH  Google Scholar 

  4. Gao, X.Y., Guo, Y.J., Shan, W.R.: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Appl. Math. Lett. 120, 107161 (2021)

    Article  MATH  Google Scholar 

  5. Jia, H.X., Zuo, D.W., Tian, X.S., Guo, Z.F.: Characteristics of coexisting rogue wave and breather in vector nonlinear Schrödinger system. Appl. Math. Lett. 136, 108461 (2023)

    Article  MATH  Google Scholar 

  6. Bilal, M., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Zahed, H.: Dispersive of propagation wave solutions to unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. Math. Methods Appl. Sci. 44, 4094 (2021)

    Article  MATH  Google Scholar 

  7. Seadawy, A.R., Ali, A., Albarakati, W.A.: Analytical wave solutions of the \((2+1)\)-dimensional first integro-differential Kadomtsev–Petviashivili hierarchy equation by using modified mathematical methods. Results Phys. 15, 102775 (2019)

    Article  Google Scholar 

  8. Seadawy, A.R., Lu, D., Iqbal, M.: Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana J. Phys. 93, 10 (2019)

    Article  Google Scholar 

  9. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a \((3+1)\)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear. Dyn. 108, 1599 (2022)

  10. Liu, F.Y., Gao, Y.T.: Lie group analysis for a higher-order Boussinesq-Burgers system. Appl. Math. Lett. 132, 108094 (2022)

  11. Gao, X.Y., Guo, Y.J., Shan, W.R.: Reflecting upon some electromagnetic waves in a ferromagnetic film via a variable-coefficient modified Kadomtsev-Petviashvili system. Appl. Math. Lett. 132, 108189 (2022)

  12. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C., Li, L.Q.: Modified generalized Darboux transformation, degenerate and bound-state solitons for a Laksmanan-Porsezian-Daniel equation. Chaos Solitons Fract. 162, 112399 (2022)

  13. Wu, X.H., Gao, Y.T., Yu, X., Ding, C.C.: N-fold generalized Darboux transformation and soliton interactions for a three-wave resonant interaction system in a weakly nonlinear dispersive medium. Chaos Solitons Fract. 165, 112786 (2022)

  14. Ali, I., Seadawy, A.R., Rizvi, S.T.R., Younis, M., Ali, K.: Conserved quantities along with Painlevé analysis and optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. Int. J. Mod. Phys. B 34, 2050283 (2020)

    Article  MATH  Google Scholar 

  15. Rizvi, S.T.R., Seadawy, A.R., Ashraf, F., Younis, M., Iqbal, H., Baleanu, D.: Lump and interaction solutions of a geophysical Korteweg–de Vries equation. Results Phys. 19, 103661 (2020)

    Article  Google Scholar 

  16. Veni, S.S., Rajan, M.S.M., Vithya, A.: Controllable phase shift of optical soliton through nonlinear tunneling in a dual mode optical fiber. Optik 242, 167094 (2021)

    Article  Google Scholar 

  17. Ali, K.K., Wazwaz, A.M., Osman, M.S.: Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the sine-Gordon expansion method. Optik 208, 164132 (2020)

    Article  Google Scholar 

  18. Xiang, X.S., Zuo, D.W.: Semi-rational solutions of N-coupled variable-coefficient nonlinear Schrödinger equation. Optik 241, 167061 (2021)

    Article  Google Scholar 

  19. Jia, H.X., Zuo, D.W., Li, X.H., Xiang, X.S.: Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation. Phys. Lett. A 405, 127426 (2021)

    Article  MATH  Google Scholar 

  20. Xiang, X.S., Zuo, D.W.: Breather and rogue wave solutions of coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn. 107, 1195 (2022)

    Article  Google Scholar 

  21. Weiner, A.M., Heritage, J.P., Hawkins, R.J., Thurston, R.N., Kirschner, E.M., Leaird, D.E., Tomlinson, W.J.: Experimental observation of the fundamental dark soliton in optical fibers. Phys. Rev. Lett. 61, 2445 (1988)

    Article  Google Scholar 

  22. Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373 (2017)

    Article  Google Scholar 

  23. Li, P., Wang, L., Kong, L.Q., Wang, X., Xie, Z.Y.: Nonlinear waves in the modulation instability regime for the fifth-order nonlinear Schrödinger equation. Appl. Math. Lett. 85, 110 (2018)

    Article  MATH  Google Scholar 

  24. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014)

    Article  Google Scholar 

  25. Wang, X.B., Zhang, T.T., Dong, M.J.: Dynamics of the breathers and rogue waves in the higher-order nonlinear Schrödinger equation. Appl. Math. Lett. 86, 298 (2018)

    Article  MATH  Google Scholar 

  26. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    Article  MATH  Google Scholar 

  27. Wang, Z., Zhaqilao: Rogue wave solutions for the generalized fifth-order nonlinear Schrödinger equation on the periodic background. Wave Motion 108, 102839 (2022)

  28. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1972)

    MATH  Google Scholar 

  29. Zhou, R.G.: Finite-dimensional integrable Hamiltonian systems related to the nonlinear Schrödinger equation. Stud. Appl. Math. 123, 311 (2009)

    Article  MATH  Google Scholar 

  30. Zhou, R.G.: Nonlinearizations of spectral problems of the nonlinear Schrödinger equation and the real-valued modified Korteweg–de Vries equation. J. Math. Phys. 48, 013510 (2007)

    Article  MATH  Google Scholar 

  31. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T.: Characteristics of rogue waves on a periodic background for the Hirota equation. Wave Motion 93, 102454 (2020)

    Article  MATH  Google Scholar 

  32. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474, 20170814 (2018)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023 and 11471050, by the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Tian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, CC., Tian, B., Zhao, X. et al. Jacobian-Elliptic-Function and Rogue-Periodic-Wave Solutions of a Fifth-Order Nonlinear Schrödinger Equation in an Optical Fiber. Qual. Theory Dyn. Syst. 22, 38 (2023). https://doi.org/10.1007/s12346-022-00720-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00720-9

Keywords

Navigation