Skip to main content
Log in

A Class of New Solvable Nonlinear Isochronous Systems and Their Classical Dynamics

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In a recent work, Calogero and Payandeh have identified a class of solvable two coupled first order nonlinear ordinary differential equations by connecting the roots of a monic polynomial of degree four with the coefficients of the polynomial. In this paper, we apply one of their earlier works to these first order nonlinear differential equations and enumerate the evolution equations in Newtonian form. Further, we demonstrate that second order evolution equations of the roots also follow the dynamics of the coefficients of the polynomial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availibility Statement

There is no data in this manuscript.

References

  1. Calogero, F.: Isochronous Systems. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  2. Calogero, F.: Zeros of Polynomials and Solvable Nonlinear Evolution Equations. Cambridge University Press, Cambridge (2018)

    Book  MATH  Google Scholar 

  3. Bolsinov, A., Morales-Ruiz, J.J., Zung, N.T., Miranda, E., Matveev, V.: Geometry and Dynamics of Integrable Systems. Springer, Switzerland (2016)

    Book  Google Scholar 

  4. Euler, N., Nucci, M.C.: Nonlinear Systems and Their Remarkable Mathematical Structures, vol. 2. CRC Press, Boca Raton (2019)

    Book  MATH  Google Scholar 

  5. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Springer, Berlin (2006)

  6. Giné, J., Llibre, J.: Invariant algebraic curves of generalized Li\(\acute{e}\)nard polynomial differential systems. Mathematics 10, 209 (2022)

    Article  Google Scholar 

  7. Demina, M.V., Valls, C.: On the Poincaré problem and Liouvillian integrability of quadratic Liénard differential equations. Proc. Roy. Soc. Edinb. Sect. A Math. 150, 3231 (2020)

    Article  MATH  Google Scholar 

  8. Demina, M.V., Giné, J., Valls, C.: Puiseux integrability of differential equations. Qual. Theory Dyn. Syst. 21, 35 (2022)

    Article  MATH  Google Scholar 

  9. Ferčec, B., Giné, J.: Formal Weierstrass integrability for a Liénard differential system. J. Math. Anal. Appl. 499, 125016 (2021)

    Article  MATH  Google Scholar 

  10. Llibre, J., Valls, C.: Phase portraits of uniform isochronous centers with homogeneous nonlinearities. J. Dyn. Control Syst. 28, 319–332 (2022)

    Article  MATH  Google Scholar 

  11. Giné, J., Llibre, J.: A characterization of the generalized Liénard polynomial differential systems having invariant algebraic curves. Chaos, Solitons & Fractals 158, 112075 (2022)

    Article  Google Scholar 

  12. Demina, M.V., Sinelshchikov, D.I.: Darboux first integrals and linearizability of quadratic-quintic Duffing-van der Pol oscillators. J. Geom. Phys. 165, 104215 (2021)

    Article  MATH  Google Scholar 

  13. Christopher, C., Llibre, J., Pantazi, C., Walcher, S.: On planar polynomial vector fields with elementary first integrals. J. Differ. Eqs. 267, 4572 (2019)

    Article  MATH  Google Scholar 

  14. Giné, J., Grau, M.: Characterization of isochronous foci for planar analytic differential systems. Proc. R. Soc. Edinb. Sect. A Math. 135(5), 985–998 (2005)

  15. Chouikha, A.R.: On isochronous analytic motions and the quantum spectrum. Phys. Scr. 94, 125220 (2019)

    Article  Google Scholar 

  16. Algaba, A., Freire, E., Gamero, E.: Isochronicity via normal form. Qual. Theory Dyn. Syst. 1, 133–156 (2000)

    Article  MATH  Google Scholar 

  17. Iacono, R., Russo, F.: Class of solvable nonlinear oscillators with isochronous orbits. Phys. Rev. E 83, 027601 (2011)

    Article  Google Scholar 

  18. Mohanasubha, R., Shakila, M.I.S., Senthilvelan, M.: On the linearization of isochronous centre of a modified Emden equation with linear external forcing. Commun. Nonlinear Sci. Numer. Simul. 19, 799 (2014)

    Article  MATH  Google Scholar 

  19. Parkavi, J.R., Mohanasubha, R., Chandrasekar, V.K., Senthilvelan, M., Lakshmanan, M.: A class of isochronous and non-isochronous nonlinear oscillators. Eur. Phys. J. Spec. Top. 231, 2387–2399 (2022)

    Article  Google Scholar 

  20. Rañada, M.F.: Bi-Hamiltonian structure of the bi-dimensional superintegrable nonlinear isotonic oscillator. J. Math. Phys. 57, 052703 (2016)

    Article  MATH  Google Scholar 

  21. Calogero, F.: New solvable dynamical systems. J. Nonlinear Math. Phys. 23, 486–493 (2016)

    Article  MATH  Google Scholar 

  22. Calogero, F.: Novel isochronous N-body problems featuring N arbitrary rational coupling constants. J. Math. Phys. 57, 072901 (2016)

    Article  MATH  Google Scholar 

  23. Ghose-Choudhury, A., Guha, P.: Isochronicity conditions and Lagrangian formulations of the Hirota type oscillator equations. Qual. Theory Dyn. Syst. 21, 144 (2022)

    Article  MATH  Google Scholar 

  24. Bihun, O., Calogero, F.: Time-dependent polynomials with one double root, and related new solvable systems of nonlinear evolution equations. Qual. Theory Dyn. Syst. 18, 153 (2019)

    Article  MATH  Google Scholar 

  25. Bihun, O.: Time-dependent polynomials with one multiple root and new solvable dynamical systems. J. Math. Phys. 60, 103503 (2019)

    Article  MATH  Google Scholar 

  26. Calogero, F., Payandeh, F.: Polynomials with multiple zeros and solvable dynamical systems including models in the plane with polynomial interactions. J. Math. Phys. 60, 082701 (2019)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

RMS is funded by the Center for Computational Modeling, Chennai Institute of Technology, India, vide funding number CIT/CCM/2022/RP-006. MS wishes to thank the National Board for Higher Mathematics, Government of India for their financial support by the research project under the Grant No. 02011/20/2018NBHM(R.P)/R &D 24II/15064.

Funding

All the authors are equally contributed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Senthilvelan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanasubha, R., Senthilvelan, M. A Class of New Solvable Nonlinear Isochronous Systems and Their Classical Dynamics. Qual. Theory Dyn. Syst. 22, 40 (2023). https://doi.org/10.1007/s12346-023-00744-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-023-00744-9

Keywords

Navigation