1 Introduction

The smooth (holomorphic, distributional) parameter dependence problem for the Cauchy-Riemann operator \(\overline{\partial }:=(1/2)(\partial _{1}+i\partial _{2})\) on the space \({\mathcal {C}}^{\infty }(\varOmega )\) of smooth complex-valued functions on an open set \(\varOmega \subset {\mathbb {R}}^{2}\) is whether for every family \((f_{\lambda })_{\lambda \in U}\) in \({\mathcal {C}}^{\infty }(\varOmega )\) depending smoothly (holomorphically, distributionally) on a parameter \(\lambda\) in an open set \(U\subset {\mathbb {R}}^{d}\) there is a family \((u_{\lambda })_{\lambda \in U}\) in \({\mathcal {C}}^{\infty }(\varOmega )\) with the same kind of parameter dependence such that

$$\begin{aligned} \overline{\partial }u_{\lambda }=f_{\lambda },\quad \lambda \in U. \end{aligned}$$

Here, smooth (holomorphic, distributional) parameter dependence of \((f_{\lambda })_{\lambda \in U}\) means that the map \(\lambda \mapsto f_{\lambda }(x)\) is an element of \({\mathcal {C}}^{\infty }(U)\) (of the space of holomorphic functions \({\mathcal {O}}(U)\) on \(U\subset {\mathbb {C}}\) open, the space of distributions \({\mathcal {D}}(V)'\) for open \(V\subset {\mathbb {R}}^{d}\) where \(U={\mathcal {D}}(V)\)) for each \(x\in \varOmega\).

The parameter dependence problem for a variety of partial differential operators on several spaces of (generalised) differentiable functions has been extensively studied, see e.g. [4, 6, 7, 16, 31, 32] and the references and background in [3, 22]. The answer to this problem for the Cauchy-Riemann operator is affirmative since the Cauchy-Riemann operator

$$\begin{aligned} \overline{\partial }^{E}:{\mathcal {C}}^{\infty } (\varOmega ,E)\rightarrow {\mathcal {C}}^{\infty }(\varOmega ,E) \end{aligned}$$
(1)

on the space \({\mathcal {C}}^{\infty }(\varOmega ,E)\) of E-valued smooth functions is surjective if \(E={\mathcal {C}}^{\infty }(U)\) (\({\mathcal {O}}(U)\), \({\mathcal {D}}(V)'\)) by [8, Corollary 3.9, p. 1112] which is a consequence of the splitting theory of Bonet and Domański for PLS-spaces [3, 4], the topological isomorphy of \({\mathcal {C}}^{\infty }(\varOmega ,E)\) to Schwartz’ \(\varepsilon\)-product \({\mathcal {C}}^{\infty }(\varOmega )\varepsilon E\) and the fact that \(\overline{\partial }:{\mathcal {C}}^{\infty }(\varOmega ) \rightarrow {\mathcal {C}}^{\infty }(\varOmega )\) is surjective on the nuclear Fréchet space \({\mathcal {C}}^{\infty }(\varOmega )\) (with its usual topology). More generally, the Cauchy-Riemann operator (1) is surjective if E is a Fréchet space by Grothendieck’s classical theory of tensor products [12] or if \(E:=F_{b}'\) where F is a Fréchet space satisfying the condition (DN) by [31, Theorem 2.6, p. 174] or if E is an ultrabornological PLS-space having the property (PA) by [8, Corollary 3.9, p. 1112] since the space \({\mathcal {O}}(\varOmega )\) of \({\mathbb {C}}\)-valued holomorphic functions on \(\varOmega\), i.e. the kernel of \(\overline{\partial }\), has the property \((\varOmega )\) by [31, Proposition 2.5 (b), p. 173]. The first and the last result cover the case that \(E={\mathcal {C}}^{\infty }(U)\) or \({\mathcal {O}}(U)\) whereas the last covers the case \(E={\mathcal {D}}(V)'\) as well. More examples of the second or third kind of such spaces E are arbitrary Fréchet–Schwartz spaces, the space \({\mathcal {S}}({\mathbb {R}}^{d})'\) of tempered distributions, the space \({\mathcal {D}}(V)'\) of distributions, the space \({\mathcal {D}}_{(w)}(V)'\) of ultradistributions of Beurling type and some more (see [4, 8, Corollary 4.8, p. 1116] and [22, Example 3, p. 7]).

In the present paper we consider the Cauchy-Riemann operator on weighted spaces \({\mathcal {E}}{\mathcal {V}}(\varOmega ,E)\) of smooth E-valued functions where E is a locally convex Hausdorff space over \({\mathbb {C}}\) with a system of seminorms \((p_{\alpha })_{\alpha \in {\mathfrak {A}}}\) generating its topology. These spaces consist of functions \(f\in {\mathcal {C}}^{\infty }(\varOmega ,E)\) fulfilling additional growth conditions induced by a family \({\mathcal {V}}:=(\nu _{n})_{n\in {\mathbb {N}}}\) of continuous functions \(\nu _{n}:\varOmega \rightarrow (0,\infty )\) on a sequence of open sets \((\varOmega _{n})_{n\in {\mathbb {N}}}\) with \(\varOmega =\bigcup _{n\in {\mathbb {N}}}\varOmega _{n}\) given by the constraint

$$\left|f\right|_{n,m,\alpha} : = \sup\limits_{\substack{x\in \Omega_{n}\\ \gamma\in\mathbb{N}^{2}_{0},\,|\gamma|\leq m}} p_{\alpha}\left((\partial^{\gamma})^{E}f(x)\right)\nu_{n}(x)<\infty$$

for every \(n\in {\mathbb {N}}\), \(m\in {\mathbb {N}}_{0}\) and \(\alpha \in {\mathfrak {A}}\), where \((\partial ^{\gamma })^{E}f\) denotes the partial derivative of f w.r.t. the multi-index \(\gamma\). Our main goal is to derive sufficient conditions on \({\mathcal {V}}\) and \((\varOmega _{n})_{n\in {\mathbb {N}}}\) such that

$$\begin{aligned} \overline{\partial }^{E}:{\mathcal {E}}{\mathcal {V}} (\varOmega ,E)\rightarrow {\mathcal {E}}{\mathcal {V}}(\varOmega ,E) \end{aligned}$$

is surjective. We recall the main result of [22], which sets the course of the present paper.

Theorem 1

[22, Theorem 5, p. 7-8] Let \({\mathcal {E}}{\mathcal {V}}(\varOmega )\) be a Schwartz space and \({\mathcal {E}}{\mathcal {V}}_{\overline{\partial }}(\varOmega )\) a nuclear subspace satisfying property \((\varOmega )\). Assume that the \({\mathbb {C}}\)-valued operator \(\overline{\partial }:{\mathcal {E}}{\mathcal {V}}(\varOmega ) \rightarrow {\mathcal {E}}{\mathcal {V}}(\varOmega )\) is surjective. Moreover, if

  1. (a)

    \(E:=F_{b}'\) where F is a Fréchet space over \({\mathbb {C}}\) satisfying (DN), or

  2. (b)

    E is an ultrabornological PLS-space over \({\mathbb {C}}\) satisfying (PA),

then

$$\begin{aligned} \overline{\partial }^{E}:{\mathcal {E}}{\mathcal {V}} (\varOmega ,E)\rightarrow {\mathcal {E}}{\mathcal {V}}(\varOmega ,E) \end{aligned}$$

is surjective.

Here \({\mathcal {E}}{\mathcal {V}}(\varOmega ) :={\mathcal {E}}{\mathcal {V}}(\varOmega ,{\mathbb {C}})\) and \({\mathcal {E}}{\mathcal {V}}_{\overline{\partial }}(\varOmega )\) is the kernel of \(\overline{\partial }\) in \({\mathcal {E}}{\mathcal {V}} (\varOmega )\), i.e. its topological subspace

$$\begin{aligned} {\mathcal {E}}{\mathcal {V}}_{\overline{\partial }}(\varOmega ) :={\mathcal {O}}(\varOmega )\cap {\mathcal {E}}{\mathcal {V}}(\varOmega ) \end{aligned}$$

consisting of holomorphic functions.

We restrict to the case where the sequence \((\varOmega _{n})_{n\in {\mathbb {N}}}\) is given by strips \(\varOmega _{n}:=S_{n}(K)\) along the real axis with holes around a compact set \(K\subset [-\infty ,\infty ]=:\overline{{\mathbb {R}}}\), i.e. for \(t\in {\mathbb {R}}\), \(t\ge 1\), we define

$$\begin{aligned} S_{t}(K):= \left( {\mathbb {C}}\setminus \overline{U_{t}(K)}\right) \cap \{z\in {\mathbb {C}}\; | \; |{{\,\mathrm{Im}\,}}(z)| < t \},\quad t>1, \quad \text {and}\quad S_{1}(K):=S_{3/2}(K), \end{aligned}$$

where the closure is taken in \({\mathbb {C}}\) and the open sets \(U_{t}(K)\) are given

$$\begin{aligned} U_{t}(K)&:= \{ z \in {\mathbb {C}}\;| \; \mathrm{d}(\{z\},K\cap {\mathbb {C}})< 1/t\} \\&\quad \cup {\left\{ \begin{array}{ll} \varnothing &{}, K \subset {\mathbb {R}}, \\ (t,\infty )+i (-1/t, 1/t) &{}, \infty \in K, \, -\infty \notin K, \\ (-\infty , -t)+i (-1/t, 1/t) &{},\infty \notin K, \, -\infty \in K,\\ \left( (-\infty , -t)\cup (t,\infty )\right) +i (-1/t, 1/t) &{}, \pm \infty \in K, \end{array}\right. } \end{aligned}$$
Fig. 1
figure 1

\(U_{t}(K)\) for \(\pm \infty \in K\) (c.f. [19, Figure 3.1, p. 11])

Fig. 2
figure 2

\(S_{t}(K)\) for \(\pm \infty \in K\) (c.f. [19, Figure 3.2, p. 12])

where \(\mathrm{d}(\{z\},K\cap {\mathbb {C}})\) denotes the Euclidean distance of the sets \(\{z\}\) and \(K\cap {\mathbb {C}}\) (see Figs. 1, 2). We note that \(\bigcup _{n\in {\mathbb {N}}}S_{n}(K)={\mathbb {C}}\setminus K\) and the definition of \(S_{1}(K)\) is motivated by \(\left( {\mathbb {C}}\setminus \overline{U_{1}(\overline{{\mathbb {R}}})}\right) \cap \{z\in {\mathbb {C}}\; | \; |{{\,\mathrm{Im}\,}}(z)| < 1 \}=\varnothing\). As a further simplification we only consider weights of the form \(\nu _{n}(z):=\exp (a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta })\), \(z\in {\mathbb {C}}\), for all \(n\in {\mathbb {N}}\) for some \(0<\beta \le 1\) and some strictly increasing real sequence \((a_{n})_{n\in {\mathbb {N}}}\), and in combination with \(\varOmega _{n}:=S_{n}(K)\), \(n\in {\mathbb {N}}\), we fix the notation

$$\begin{aligned} {\mathcal {E}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E) :={\mathcal {E}}{\mathcal {V}}({\mathbb {C}}\setminus K,E) \quad \text {and} \quad {\mathcal {E}}^{\beta }_{(a_n),\overline{\partial }} (\overline{{\mathbb {C}}}\setminus K) :={\mathcal {E}} {\mathcal {V}}_{\overline{\partial }}({\mathbb {C}}\setminus K) \end{aligned}$$

with \(\overline{{\mathbb {C}}}:=\overline{{\mathbb {R}}}+i{\mathbb {R}}\). In the case \(\beta =1\) these spaces are of interest because they are the basic spaces for the theory of vector-valued Fourier hyperfunctions, see e.g. [13,14,15, 17, 19, 24]. Looking at Theorem 1, the main obstacle is to prove that \({\mathcal {E}}^{\beta }_{(a_n),\overline{\partial }}(\overline{{\mathbb {C}}}\setminus K)\) satsifies property \((\varOmega )\). In [22, Corollary 14, p. 18] this is accomplished for \(K=\varnothing\) and sequences \((a_{n})_{n\in {\mathbb {N}}}\) such that \(a_{n}\nearrow 0\) or \(a_{n}\nearrow \infty\). We will use this result and extend it to the case that \(K\subset \overline{{\mathbb {R}}}\) is a non-empty compact set.

Let us summarise the content of our paper. In Sect. 2 we recall necessary definitions and preliminaries which are needed in the subsequent sections. Sect. 3 is dedicated to a counterpart for weighted holomorphic functions of the Silva-Köthe-Grothendieck duality

$$\begin{aligned} {\mathcal {O}}({\mathbb {C}}\setminus K)/{\mathcal {O}}({\mathbb {C}})\cong {\mathscr {A}}(K)_{b}' \end{aligned}$$

where \(K\subset {\mathbb {R}}\) is a non-empty compact set and \({\mathscr {A}}(K)\) the space of germs of real analytic functions on K (see Theorem 11, Corollary 13, Corollary 15). In Sect. 4 we use this duality to show that \({\mathcal {E}}^{\beta }_{(a_n),\overline{\partial }}(\overline{{\mathbb {C}}}\setminus K)\) satisfies property \((\varOmega )\) under some restrictions on K, or on \((a_n)_{n\in {\mathbb {N}}}\) and \(\beta\) (see Corollary 19). The preceding conditions on K, or on \((a_n)_{n\in {\mathbb {N}}}\) and \(\beta\) are used in Theorem 20 to show that \(\overline{\partial }^{E}:{\mathcal {E}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E) \rightarrow {\mathcal {E}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)\) is surjective if \(E:=F_{b}'\) where F is a Fréchet space over \({\mathbb {C}}\) satisfying (DN), or if E is an ultrabornological PLS-space over \({\mathbb {C}}\) satisfying (PA).

2 Notation and preliminaries

The notation and preliminaries are essentially the same as in [22, 23, Sect. 2]. We define the distance of two subsets \(M_{0}, M_{1} \subset {\mathbb {R}}^{2}\) w.r.t. the Euclidean norm \(|\cdot |\) on \({\mathbb {R}}^{2}\) via

$$\begin{aligned} \mathrm{d}(M_{0},M_{1}) :={\left\{ \begin{array}{ll} \inf _{x\in M_{0},\,y\in M_{1}}|x-y| &{},\; M_{0},\,M_{1} \ne \emptyset , \\ \infty &{},\; M_{0}= \emptyset \;\text {or}\; M_{1}=\emptyset . \end{array}\right. } \end{aligned}$$

Moreover, we denote by \({\mathbb {B}}_{r}(x):=\{w\in {\mathbb {R}}^{2}\;|\;|w-x|<r\}\) the Euclidean ball around \(x\in {\mathbb {R}}^{2}\) with radius \(r>0\) and identify \({\mathbb {R}}^{2}\) and \({\mathbb {C}}\) as (normed) vector spaces. We denote the closure of a subset \(M\subset {\mathbb {R}}^{2}\) by \(\overline{M}\), the boundary of M by \(\partial M\) and for a function \(f:M\rightarrow {\mathbb {C}}\) and \(K\subset M\) we denote by \(f_{\mid K}\) the restriction of f to K. We write \({\mathcal {C}}(\varOmega )\) for the space of continuous \({\mathbb {C}}\)-valued functions on a set \(\varOmega \subset {\mathbb {R}}^{2}\) and \(L^{1}(\varOmega )\) for the space of (equivalence classes of) \({\mathbb {C}}\)-valued Lebesgue integrable functions on a measurable set \(\varOmega \subset {\mathbb {R}}^{2}\).

By E we always denote a non-trivial locally convex Hausdorff space over the field \({\mathbb {C}}\) equipped with a directed fundamental system of seminorms \((p_{\alpha })_{\alpha \in {\mathfrak {A}}}\). If \(E={\mathbb {C}}\), then we set \((p_{\alpha })_{\alpha \in {\mathfrak {A}}}:=\{|\cdot |\}\). Further, we denote by L(FE) the space of continuous linear maps from a locally convex Hausdorff space F to E and sometimes use the notation \(\langle T, f\rangle :=T(f)\), \(f\in F\), for \(T\in L(F,E)\). If \(E={\mathbb {C}}\), we write \(F':=L(F,{\mathbb {C}})\) for the dual space of F. If F and E are (linearly topologically) isomorphic, we write \(F\cong E\). We denote by \(L_{b}(F,E)\) the space L(FE) equipped with the locally convex topology of uniform convergence on the bounded subsets of F.

We recall that a function \(f:\varOmega \rightarrow E\) on an open set \(\varOmega \subset {\mathbb {C}}\) to E is called holomorphic if the limit

$$\left( {\frac{\partial }{{\partial z}}} \right)^{E} f(z_{0} ): = \lim\limits_{\substack{h\to 0\\ h\in\mathbb{C}, h\neq 0}}\frac{{f(z_{0} + h) - f(z_{0} )}}{h}$$

exists in E for every \(z_{0}\in \varOmega\). The linear space of all functions \(f:\varOmega \rightarrow E\) which are holomorphic is denoted by \({\mathcal {O}}(\varOmega ,E)\). For a compact set \(K\subset \overline{{\mathbb {R}}}\), \(0<\beta \le 1\) and a strictly increasing real sequence \((a_{n})_{n\in {\mathbb {N}}}\) we set

$$\begin{aligned} {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E) :=\{f\in {\mathcal {O}}({\mathbb {C}}\setminus K,E)\; | \; \forall \; n\in {\mathbb {N}},\,\alpha \in {\mathfrak {A}}:\; |f|_{n,\alpha }<\infty \} \end{aligned}$$

where

$$\begin{aligned} |f|_{n,\alpha }:=\sup _{z \in S_{n}(K)}p_{\alpha }(f(z)) e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}. \end{aligned}$$

The subscript \(\alpha\) in the notation of the seminorms is omitted in the \({\mathbb {C}}\)-valued case and we write \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K) :={\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,{\mathbb {C}})\).

Remark 2

We have \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K) ={\mathcal {E}}^{\beta }_{(a_n),\overline{\partial }}(\overline{{\mathbb {C}}}\setminus K)\) as Fréchet spaces by [22, Proposition 7 (b), p. 11] and [22, Example 6, p. 11].

Throughout the rest of the paper we make the following standing assumptions.

Assumption 3

  1. (i)

    E is sequentially complete,

  2. (ii)

    \(K\subset \overline{{\mathbb {R}}}\) is a non-empty compact set,

  3. (iii)

    \(0<\beta \le 1\),

  4. (iv)

    \((a_n)_{n\in {\mathbb {N}}}\) is a strictly increasing sequence with \(a_{n}<0\) for all \(n\in {\mathbb {N}}\) or \(a_{n}\ge 0\) for all \(n\in {\mathbb {N}}\), and \(\lim _{n\to \infty }a_{n}=0\) or \(\lim _{n\to \infty }a_{n}=\infty\).

3 Duality

We recall the well-known topological Silva-Köthe-Grothendieck isomorphy

$$\begin{aligned} {\mathcal {O}}({\mathbb {C}}\setminus K,E)/{\mathcal {O}}({\mathbb {C}},E) \cong L_{b}({\mathscr {A}}(K),E) \end{aligned}$$
(2)

where E is a quasi-complete locally convex Hausdorff space, \(\varnothing \ne K\subset {\mathbb {R}}\) is compact, \({\mathcal {O}}({\mathbb {C}}\setminus K,E)\) is equipped with the topology of uniform convergence on compact subsets of \({\mathbb {C}}\setminus K\), the quotient space with the induced quotient topology and \({\mathscr {A}}(K)\) is the space of germs of real analytic functions on K with its inductive limit topology (see e.g. [29, p. 6], [11, Proposition 1, p. 46], [18, §27.4, p. 375-378], [27, Theorem 2.1.3, p. 25]). The aim of this section is to prove a counterpart of this isomorphy for weighted vector-valued holomorphic functions and non-empty compact \(K\subset \overline{{\mathbb {R}}}\).

The spaces \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)\) play the counterpart of \({\mathcal {O}}({\mathbb {C}}\setminus K,E)\) for our version of the isomorphy (2). Next, we introduce the counterparts of \({\mathscr {A}}(K)\). Let \(\varOmega \subset {\mathbb {C}}\) be open and \(f\in {\mathcal {O}}(\varOmega )\). For \(z\in \varOmega\) and \(n\in {\mathbb {N}}_{0}\) we denote the point evaluation of the nth complex derivative at z by \(\delta ^{(n)}_{z}f:=f^{(n)}(z)\).

Proposition 4

For \(n\in {\mathbb {N}}\) let

$$\begin{aligned} {\mathcal {O}}^{-\beta }_{a_n} \left( {\overline{{U_{n} (K)}} } \right) :=\{f\in {\mathcal {O}}(U_{n}(K))\cap {\mathcal {C}} \left( {\overline{{U_{n} (K)}} } \right) \;|\; \Vert f\Vert _{K,n}:=\Vert f\Vert _{n} < \infty \} \end{aligned}$$

where

$$\begin{aligned} \Vert f\Vert _{K,n}:=\Vert f\Vert _{n}:=\sup _{z \in \overline{U_{n}(K)}}|f(z)| e^{-a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \end{aligned}$$

and the spectral maps for \(n,k\in {\mathbb {N}}\), \(n\le k\), are given by the restrictions

$$\begin{aligned} \pi _{n,k}:{\mathcal {O}}^{-\beta }_{a_n} \left( {\overline{{U_{n} (K)}} } \right) \rightarrow {\mathcal {O}}^{-\beta }_{a_k} \left(\overline{U_{k}(K)}\right), \; \pi _{n,k}(f):=f_{\mid U_{k}(K)}. \end{aligned}$$

Then the following assertions hold.

  1. (a)

    The inductive limit

    $${\mathcal{O}}_{{(a_{n} )}}^{{ - \beta }} (K): = \lim\limits_{\substack{\longrightarrow\\n\in\mathbb{N}}}{\mathcal{O}}_{{a_{n} }}^{{ - \beta }} \left( {\overline{{U_{n} (K)}} } \right)$$

    exists and is a DFS-space.

  2. (b)

    The span of the set of point evaluations of complex derivatives \(\{\delta _{x_{0}}^{(n)} \; | \; x_{0} \in K\cap {\mathbb {R}},\, n\in {\mathbb {N}}_{0}\}\) is dense in \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\) if \(K\subset {\mathbb {R}}\) or \(K\cap \{\pm \infty \}\) contains no isolated points in K.

Proof

(a) It is easy to see that \({\mathcal {O}}^{-\beta }_{a_n} \left( {\overline{{U_{n} (K)}} } \right)\) is a Banach space for every \(n\in {\mathbb {N}}\). Further, the maps \(\pi _{n,m}:{\mathcal {O}}^{-\gamma }_{a_n} \left( {\overline{{U_{n} (K)}} } \right) \rightarrow {\mathcal {O}}^{-\beta }_{a_m}\left(\overline{U_{m}(K)}\right)\), \(n\le m\), are injective by virtue of the identity theorem and the definition of sets \(U_{n}(K)\). Thus the considered spectrum is an embedding spectrum. For all \(M \subset U_{n}(K)\) compact and \(f\in B_{n}:=\{g\in {\mathcal {O}}^{-\beta }_{a_n} \left( {\overline{{U_{n} (K)}} } \right) \;|\;\Vert g\Vert _{n}\le 1\}\) we have

$$\begin{aligned} \Vert f\Vert _{M}:=\sup _{z\in M}|f(z)|=\sup _{z\in M}|f(z)|e^{-a_{n}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \le \sup _{z\in M} e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\Vert f\Vert _{n} \le \sup _{z\in M}e^{a_{n}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}. \end{aligned}$$

Thus \(B_{n}\) is bounded in \({\mathcal {O}}(U_{n}(K))\) w.r.t. the system of seminorms generated by \(\Vert \cdot \Vert _{M}\) for compact \(M \subset U_{n}(K)\). As this space is a Fréchet-Montel space, \(B_{n}\) is relatively compact and hence relatively sequentially compact in \({\mathcal {O}}(U_{n}(K))\).

What remains to be shown is that for all \(n\in {\mathbb {N}}\) there exists \(m>n\) such that \(\pi _{n,m}\) is a compact map. Because the considered spaces are Banach spaces, it suffices to prove the existence of \(m>n\) such that \((\pi _{n,m}(f_{k}))_{k\in {\mathbb {N}}}\) has a convergent subsequence in \({\mathcal {O}}^{-\beta }_{a_m}\left(\overline{U_{m}(K)}\right)\) for every sequence \((f_{k})_{k\in {\mathbb {N}}}\) in \(B_{n}\). We choose \(m:=2n\). For \(\varepsilon >0\) we set

$$\begin{aligned} Q:=\overline{U_{2n}(K)}\cap \{z\in {\mathbb {C}}\;|\; |{{\,\mathrm{Re}\,}}(z)|\le \max (0, \ln (\varepsilon )/(a_{n}-a_{2n}))^{1/\beta }+n\}, \end{aligned}$$

and get

$$\begin{aligned} \sup _{z \in \overline{U_{2n}(K)}\setminus Q}\frac{e^{-a_{2n}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}}{e^{-a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}} =\sup _{z \in \overline{U_{2n}(K)}\setminus Q}e^{(a_{n}-a_{2n})| {{\,\mathrm{Re}\,}}(z)|^{\beta }} \le \varepsilon . \end{aligned}$$
(3)

Thus condition (RU) in [2, p. 67] is fufilled and it follows analogously to the proof of [2, Theorem (b), p. 67-68] that every sequence \((f_{k})_{k \in {\mathbb {N}}}\) in \(B_{n}\) has a subsequence \((f_{k_{l}})_{l\in {\mathbb {N}}}\) such that \((\pi _{n,2n}(f_{k_{l}}))_{l\in {\mathbb {N}}}\) converges in \({\mathcal {O}}^{-\beta }_{a_{2n}}\left(\overline{U_{2n}(K)}\right)\), proving the compactness of \(\pi _{n,2n}\). Hence the inductive limit \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) exists and is a DFS-space by [25, Proposition 25.20, p. 304].

(b) We set \(F:=\mathrm{span}\{\delta _{x_{0}}^{(n)}\;| \;x_{0}\in K\cap {\mathbb {R}},\,n\in {\mathbb {N}}_{0}\}\). Let \(x_{0}\in K\cap {\mathbb {R}}\) and \(n\in {\mathbb {N}}_{0}\). It follows from Cauchy’s inequality that \(\delta _{x_{0}}^{(n)}\) is continuous on \({\mathcal {O}}^{-\beta }_{a_k}(\overline{U_{k}(K)})\) for any \(k\in {\mathbb {N}}\), implying \(F\subset {\mathcal {O}}^{-\beta }_{(a_n)}(K)'\). As \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) is a DFS-space by part (a), it is reflexive by [25, Proposition 25.19, p. 303], which means that the canonical embedding \(J:{\mathcal {O}}^{-\beta }_{(a_n)}(K) \rightarrow ({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}')_{b}'\) is a topological isomorphism. We consider the polar set of F, i.e.

$$\begin{aligned} F^{\circ }:=\{y\in ({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}')_{b}' \;|\;\forall \;T\in F:\; y(T)=0\}. \end{aligned}$$

Let \(y\in F^{\circ }\). Then there is \(f\in {\mathcal {O}}^{-\beta }_{(a_n)}(K)\) such that \(y=J(f)\). For \(T:=\delta _{x_{0}}^{(n)}\in F\)

$$\begin{aligned} 0=y(T)=J(f)(T)=T(f)=f^{(n)}(x_{0}) \end{aligned}$$

is valid for any \(n\in {\mathbb {N}}_{0}\). Thus f is identical to zero on a neighbourhood of \(x_{0}\) (by Taylor series expansion) since f is holomorphic near \(x_{0}\in U_{n}(K)\). Due to the assumptions every component of \(U_{n}(K)\) contains a point \(x_{0}\in K\cap {\mathbb {R}}\) so f is identical to zero on \(\overline{U_{n}(K)}\) by the identity theorem and continuity, yielding to \(y=0\). Therefore \(F^{\circ }=\{0\}\) and thus F is dense in \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\) by the bipolar theorem. \(\square\)

In the case \(\beta :=1\) and \(a_{n}:=-1/n\) for all \(n\in {\mathbb {N}}\) the spaces \({\mathcal {O}}^{-1}_{(a_n)}(K)\) play an essential role in the theory of Fourier hyperfunctions and it is already mentioned in [17, p. 469] resp. proved in [15, 1.11 Satz, p. 11] and [19, 3.5 Theorem, p. 17] that they are DFS-spaces.

Remark 5

If \(K\subset {\mathbb {R}}\), then \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\cong {\mathscr {A}}(K)\).

Now, we take a closer look at the sets \(U_{t}(K)\) (c.f. [19, 3.3 Remark, p. 13]).

Remark 6

Let \(t\in {\mathbb {R}}\), \(t\ge 1\).

  1. (a)

    The set \(U_{t}(K)\) has finitely many components.

  2. (b)

    Let Z be a component of \(U_{t}(K)\). We define \(a:=\min (Z\cap K)\) and \(b:=\max (Z\cap K)\) if existing (in \({\mathbb {R}}\)).

    1. (i)

      If Z is bounded, there exists \(0<R\le 1/t\) such that for all \(0<r\le R\): \(\{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},[a,b])< r\}\subset Z\)

    2. (ii)

      If \(Z\cap {\mathbb {R}}\) is bounded from below and unbounded from above and a exists, there exists \(0<R\le 1/t\) such that for all \(0<r\le R\): \(\{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},[a,\infty ))< r\}\subset Z\)

    3. (iii)

      If \(Z\cap {\mathbb {R}}\) is bounded from above and unbounded from below and b exists, there exists \(0<R\le 1/t\) such that for all \(0<r\le R\): \(\{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},(-\infty ,b])< r\}\subset Z\)

    4. (iv)

      If \(Z\cap {\mathbb {R}}\) is unbounded from below and above, there exists \(0<R\le 1/t\) such that for all \(0<r\le R\): \(\{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},{\mathbb {R}})< r\}\subset Z\)

    5. (v)

      If \(Z\cap {\mathbb {R}}\) is bounded from below and unbounded from above and a does not exist, then \(Z=(t,\infty )+i (-1/t,1/t)\). If \(Z\cap {\mathbb {R}}\) is bounded from above and unbounded from below and b does not exist, then \(Z=(-\infty ,-t)+i (-1/t,1/t)\).

Proof

(a) We only consider the case \(\infty \in K\), \(-\infty \notin K\). Let \((Z_{j})_{j\in J}\) denote the (pairwise disjoint) components of \(U_{t}(K)\). Then \(U_{t}(K) = \bigcup _{j\in J}Z_{j}\) and by definition of a component there is \(k\in J\) such that \(Z_{k}\) is the only component including \((t,\infty )+i(-1/t,1/t)\). Furthermore there exists \(m\in {\mathbb {R}}\) with \(\bigcup _{j\in J\setminus \{k\}}(Z_{j}\cap {\mathbb {R}}) \subset [m,t]\) by assumption. For \(j\ne k\) the length \(\lambda (Z_{j}\cap {\mathbb {R}})\) of the interval \(Z_{j}\cap {\mathbb {R}}\), where \(\lambda\) denotes the Lebesgue measure, is estimated from below by \(\lambda (Z_{j}\cap {\mathbb {R}})\ge 2/t\) by definition of \(U_{t}(K)\). Since all \(Z_{j}\) are pairwise disjoint, this implies that J has to be finite. The others cases follow analogously.

(b)(i) Since \(Z\cap K\) is closed in \({\mathbb {R}}\) and therefore compact, a and b exist. Hence \([a,b]\subset Z\) by the definition of \(U_{t}(K)\) and as Z is connected. [ab] being a compact subset of the open set Z implies that there is \(0<R< 1/t\) such that \(([a,b]+i(-R,R))\subset Z\) by the tube lemma, which completes the proof.

(ii) If \(Z\cap K\cap (-\infty ,t]\ne \varnothing\), then a exists and analogously to (i) there exists \(0<R<1/t\) such that for all \(0<r\le R\)

$$\begin{aligned} \{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},[a,t])<r\}\subset Z. \end{aligned}$$

By definition of \(U_{t}(K)\) this brings forth \(\{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},[a,\infty ))<r\}\subset Z\). If \(Z\cap K\cap (-\infty ,t]=\varnothing\) and a exists, the desired \(0<R<1/t\) exists by the definition of \(U_{t}(K)\) since \(t\not \in Z\cap K\) and \(Z\cap K\) is closed in \({\mathbb {R}}\), which implies \(\mathrm{d}(\{t\},Z\cap K)>0\).

(iii) Analogously to (ii).

(iv) By the assumptions \(Z\cap K\cap [-t,t]\ne \varnothing\). Analogously to (i) there exists \(0<R<1/t\) such that for all \(0<r\le R\)

$$\begin{aligned} \{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},[-t,t])< r\}\subset Z. \end{aligned}$$

Like in (ii) and (iii) this brings forth \(\{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},{\mathbb {R}})<r\}\subset Z\).

(v) This follows directly from the definition of \(U_{t}(K)\) and as Z is a component of \(U_{t}(K)\). \(\square\)

Definition 7

Let \(n\in {\mathbb {N}}\) and \((Z_{j})_{j\in J}\) denote the components of \(U_{n}(K)\). A component \(Z_{j}\) of \(U_{n}(K)\) fulfils one of the cases of Remark 6 (b) and so for \(a=a_{j}\), \(b=b_{j}\) (in the cases (i)-(iii)), for \(0<r_{j}<R_{j}=R\) (in the cases (i)-(iv)) resp. \(0<r_{j}<1/n=:R_{j}\) (in the case (v)) we define

$$\begin{aligned} V_{r_{j}}(Z_{j}):={\left\{ \begin{array}{ll} \{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},[a_{j},b_{j}])<r_{j}\} &{}, Z_{j}\;\text {fulfils (i)},\\ \{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},[a_{j},\infty ))<r_{j}\} &{}, Z_{j}\;\text {fulfils (ii)},\\ \{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},(-\infty ,b_{j}])<r_{j}\} &{}, Z_{j}\;\text {fulfils (iii)},\\ \{z\in {\mathbb {C}}\;|\;\mathrm{d}(\{z\},{\mathbb {R}})<r_{j}\} &{}, Z_{j}\;\text {fulfils (iv)}, \\ (1/r_{j},\infty )+i(-r_{j}, r_{j}) &{}, Z_{j}=(n,\infty )+i(-1/n,1/n),\\ (-\infty ,-1/r_{j})+i(-r_{j}, r_{j}) &{}, Z_{j}=(-\infty , -n)+i(-1/n,1/n), \end{array}\right. } \end{aligned}$$

where \(Z_{j}\) fulfils (v) in the last two cases. By Remark 6 (a) there is w.l.o.g. \(k\in {\mathbb {N}}\) with \(U_{n}(K)=\bigcup _{j=1}^{k}Z_{j}\). We set \(r:=(r_{j})_{1\le j\le k}\) and the path

$$\begin{aligned} \gamma _{K,n,r}:=\sum _{j=1}^{k}\gamma _{j} \end{aligned}$$

where \(\gamma _{j}\) is the path along the boundary of \(V_{r_{j}}(Z_{j})\) in \({\mathbb {C}}\) in the positive sense (counterclockwise) (see Fig. 3).

Fig. 3
figure 3

Path \(\gamma _{K,n,r}\) for \(\pm \infty \in K\) (c.f. [19, Figure 4.1, p. 40])

Proposition 8

Let \(n\in {\mathbb {N}}\) and \(\gamma _{K,n,r}\) be the path from Definition 7. Then the following assertions hold.

  1. (a)

    \(F\cdot \varphi\) is Pettis-integrable along \(\gamma _{K,n,r}\) for all \(F\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)\) and \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right).\)

  2. (b)

    There are \(m\in {\mathbb {N}}\) and \(C>0\) such that for all \(\alpha \in {\mathfrak {A}}\), \(F\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)\) and \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\)

    $$\begin{aligned} p_{\alpha }\left( \int _{\gamma _{K,n,r}}F(\zeta )\varphi (\zeta ) \mathrm{d}\zeta \right) \le C |F|_{m,\alpha }\Vert \varphi \Vert _{n}. \end{aligned}$$
  3. (c)

    For all \(F\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)\), \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\) and \(\widetilde{r}:=(\widetilde{r}_{j})_{1\le j\le k}\) with \(0<\widetilde{r}_{j}<R_{j}\,\) for all \(1\le j\le k\)

    $$\begin{aligned} \int _{\gamma _{K,n,r}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta =\int _{\gamma _{K,n,\widetilde{r}}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta . \end{aligned}$$
  4. (d)

    For all \(F\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) and \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\)

    $$\begin{aligned} \int _{\gamma _{K,n,r}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta =0. \end{aligned}$$

Proof

\((a)+(b)\) We have to show that there is \(e_{K,n,r}\in E\) such that

$$\begin{aligned} \langle e',e_{K,n,r}\rangle =\int _{\gamma _{K,n,r}}\langle e', F(\zeta )\varphi (\zeta )\rangle \mathrm{d}\zeta ,\quad e'\in E', \end{aligned}$$

which gives \(\int _{\gamma _{K,n,r}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta =e_{K,n,r}\).

First, let \(V_{r_{j}}(Z_{j})\) be bounded for some \(1\le j\le k\). There is a parametrisation \(\gamma _{j}:[0,1]\rightarrow {\mathbb {C}}\) which has a continuously differentiable extension \(\widetilde{\gamma }_{j}\) on \((-1,2)\). As the map \((e'\circ (F\cdot \varphi )\circ \gamma _{j})\cdot \gamma _{j}'\) is continuous on [0, 1] for every \(e'\in E'\), it is an element of \(L^{1}([0,1])\) for every \(e'\in E'\). Thus the map

$$\begin{aligned} {\mathfrak {I}}_{j}:E'\rightarrow {\mathbb {C}},\;{\mathfrak {I}}_{j}(e') :=\int _{\gamma _{j}}\langle e',F(\zeta )\varphi (\zeta )\rangle \mathrm{d}\zeta =\int _{0}^{1}\langle e',(F\cdot \varphi )(\gamma _{j}(t))\rangle \gamma _{j}'(t)\mathrm{d}t, \end{aligned}$$

is well-defined and linear. We estimate

$$\begin{aligned} |{\mathfrak {I}}_{j}(e')|\le \underbrace{\int _{0}^{1}| \gamma _{j}'(t)|\mathrm{d}t}_{=:\ell (\gamma _{j})} \sup _{z\in (F\cdot \varphi )(\gamma _{j}([0,1]))}|e'(z)|,\quad e'\in E'. \end{aligned}$$

Let us denote by \(\overline{\mathrm{acx}} ((F\cdot \varphi )(\gamma _{j}([0,1])))\) the closure of the absolutely convex hull of the set \((F\cdot \varphi )(\gamma _{j}([0,1]))\). Since \(e'\circ (F\cdot \varphi) \circ \widetilde{\gamma }_{j}\in {\mathcal {C}}^{1}((-1,2))\) for every \(e'\in E'\), the absolutely convex set \(\overline{\mathrm{acx}}((F\cdot \varphi ) (\gamma _{j}([0,1])))\) is compact in the sequentially complete space E by [5, Proposition 2, p. 354], yielding \({\mathfrak {I}}_{j}\in (E_{\kappa }')'\cong E\) by the theorem of Mackey-Arens, i.e. there is \(e_{j}\in E\) such that

$$\begin{aligned} \langle e',e_{j}\rangle ={\mathfrak {I}}_{j}(e') =\int _{\gamma _{j}}\langle e',F(\zeta )\varphi (\zeta )\rangle \mathrm{d}\zeta ,\quad e'\in E'. \end{aligned}$$

Therefore \(F\cdot \varphi\) is Pettis-integrable along \(\gamma _{j}\). Furthermore, we choose \(m_{j}\in {\mathbb {N}}\) such that \((1/m_{j})<r_{j}\) and for \(\alpha \in {\mathfrak {A}}\) we set \(B_{\alpha }:=\{x\in E\;|\;p_{\alpha }(x)<1\}\). We note that

$$\begin{aligned}&p_{\alpha }\left( \int _{\gamma _{j}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta \right) \\&\quad =\sup _{e'\in B_{\alpha }^{\circ }}\left| \langle e', \int _{\gamma _{j}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta \rangle \right| \le \ell (\gamma _{j})\sup _{e'\in B_{\alpha }^{\circ }} \sup _{z\in \gamma _{j}([0,1])}|e'(F(z))\varphi (z)|\\&\quad \le \ell (\gamma _{j})\sup _{w\in \gamma _{j}([0,1])} e^{(a_{n}-a_{m_j})|{{\,\mathrm{Re}\,}}(w)|^{\beta }} \sup _{e'\in B_{\alpha }^{\circ }}\sup _{z\in S_{m_{j}}(K)}| e'(F(z)e^{a_{m_j}|{{\,\mathrm{Re}\,}}(z)|^{\beta }})|\Vert \varphi \Vert _{n}\\&\quad =\ell (\gamma _{j})\sup _{w\in \gamma _{j}([0,1])} e^{(a_{n}-a_{m_j})|{{\,\mathrm{Re}\,}}(w)|^{\beta }} |F|_{m_{j},\alpha }\Vert \varphi \Vert _{n} \end{aligned}$$

where we used [25, Proposition 22.14, p. 256] in the first and the last equation to get from \(p_{\alpha }\) to \(\sup _{e'\in B_{\alpha }^{\circ }}\) and back. If \(K\subset {\mathbb {R}}\), then all \(V_{r_{j}}(Z_{j})\), \(1\le j\le k\), are bounded and with the choice \(e_{K,n,r}:=\sum _{j=1}^{k}e_{j}, \, m:=\max _{1\le j\le k} m_{j} \,\text{and} \, C:=k\max _{1\le j\le k}\ell (\gamma _{j}) \sup _{w\in \gamma _{j}([0,1])}e^{(a_{n}-a_{m_j})|{{\,\mathrm{Re}\,}}(w)|^{\beta }}\) we deduce our statement.

Second, let us consider the case \(\infty \in K\), \(-\infty \not \in K\). Let \(Z_{k}\) be the unique unbounded component of \(U_{n}(K)\). For \(q\in {\mathbb {N}}\), \(q>1/r_{k}>n\), we denote by \(\gamma _{k,q}\) the part of \(\gamma _{k}\) in \(\{z\in {\mathbb {C}}\;|\;{{\,\mathrm{Re}\,}}(z)\le q\}\). Like in the first part the Pettis-integral

$$\begin{aligned} e_{k,q}:=\int _{\gamma _{k,q}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta \end{aligned}$$

exists (in E) and for \(\alpha \in {\mathfrak {A}}\) and \(m_{k}\in {\mathbb {N}}\), \((1/m_{k})<r_{k}\), we have

$$\begin{aligned} p_{\alpha }\left( \int _{\gamma _{k,q}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta \right) \le \ell (\gamma _{k,q})\sup _{w\in \gamma _{k,q}([0,1])}e^{(a_{n}-a_{m_k})| {{\,\mathrm{Re}\,}}(w)|^{\beta }} |F|_{m_{k},\alpha }\Vert \varphi \Vert _{n}. \end{aligned}$$

Next, we prove that \((e_{k,q})_{q>1/r_{k}}\) is a Cauchy sequence in E. We choose \(M:=\max (m_{k},2n)\). For \(q,p\in {\mathbb {N}}\), \(q>p>1/r_{k}>n\), we obtain

$$\begin{aligned}&p_{\alpha }(e_{k,q}-e_{k,p})\\&\quad =\sup _{e'\in B_{\alpha }^{\circ }}\left| \int _{\gamma _{k,q} -\gamma _{k,p}}e'(F(\zeta ))\varphi (\zeta )\mathrm{d}\zeta \right| \\&\quad \le \sup _{e'\in B_{\alpha }^{\circ }}\left( \int _{p}^{q}| e'(F(t-ir_{k}))\varphi (t-ir_{k})|\mathrm{d}t +\int _{p}^{q}|e'(F(t+ir_{k}))\varphi (t+ir_{k})|\mathrm{d}t\right) \\&\quad \le 2\sup _{e'\in B_{\alpha }^{\circ }} \int _{p}^{q}e^{(a_{n}-a_{M})t^{\beta }} \mathrm{d}t|e'\circ F|_{M}\Vert \varphi \Vert _{n}\\&\quad =2\int _{p}^{q}e^{(a_{n}-a_{M})t^{\beta }} \mathrm{d}t |F|_{M,\alpha }\Vert \varphi \Vert _{n} \le 2 \int _{p}^{q}e^{(a_{n}-a_{2n})t^{\beta }} \mathrm{d}t | F|_{M,\alpha }\Vert \varphi \Vert _{n} \end{aligned}$$

and observe that \((\int _{0}^{q}e^{(a_{n}-a_{2n})t^{\beta }}\mathrm{d}t)_{q}\) is a Cauchy sequence in \({\mathbb {C}}\) because

$$\begin{aligned} \int _{0}^{\infty }e^{(a_{n}-a_{2n})t^{\beta }}\mathrm{d}t =\frac{\varGamma (1/\beta )}{\beta |a_{n}-a_{2n}|^{1/\beta }} \end{aligned}$$

where \(\varGamma\) is the gamma function. Therefore \((e_{k,q})_{q>1/r_{k}}\) is a Cauchy sequence in E, has a limit \(e_{k}\) in the sequentially complete space E and

$$\begin{aligned} e_{k}=\int _{\gamma _{k}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta . \end{aligned}$$

We fix \(p\in {\mathbb {N}}\), \(p>1/r_{k}>n\), and conclude that

$$\begin{aligned} p_{\alpha }\left( \int _{\gamma _{k}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta \right)&\le p_{\alpha }(e_{k}-e_{k,p})+p_{\alpha }(e_{k,p})\\&\le \left( \frac{2\varGamma (1/\beta )}{\beta |a_{n}-a_{2n}|^{1/\beta }} +\ell (\gamma _{k,p})\sup _{w\in \gamma _{k,p}([0,1])}e^{(a_{n}-a_{m_k})| {{\,\mathrm{Re}\,}}(w)|^{\beta }} \right) |F|_{M,\alpha }\Vert \varphi \Vert _{n} \end{aligned}$$

Consequently, our statement holds also in the case \(\infty \in K\), \(-\infty \not \in K\) and in the remaining cases it follows analogously.

(c) We note that

$$\begin{aligned} \langle e',\int _{\gamma _{K,n,r}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta -\int _{\gamma _{K,n,\widetilde{r}}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta \rangle =\int _{\gamma _{K,n,r}-\gamma _{K,n,\widetilde{r}}} \langle e',F(\zeta )\varphi (\zeta )\rangle \mathrm{d}\zeta \end{aligned}$$

for all \(e'\in E'\). Thus statement (c) follows from Cauchy’s integral theorem and the Hahn-Banach theorem if \(K\subset {\mathbb {R}}\). Now, let us consider the case \(\infty \in K\), \(-\infty \not \in K\). We denote by \(\gamma _{k}\) resp. \(\widetilde{\gamma }_{k}\) the part of \(\gamma _{K,n,r}\) resp. \(\gamma _{K,n,\widetilde{r}}\) in the unbounded component of \(U_{n}(K)\). It suffices to show that

$$\begin{aligned} \int _{\gamma _{k}-\widetilde{\gamma }_{k}}\langle e',F(\zeta ) \varphi (\zeta )\rangle \mathrm{d}\zeta =0,\quad e'\in E'. \end{aligned}$$
(4)

Let \(\varepsilon >0\) and w.l.o.g. \(r_{k}<\widetilde{r}_{k}\). We choose the compact set \(Q\subset \overline{U_{2n}(K)}\) as in the proof of Proposition 4 (b). Further, we take \(q\in {\mathbb {R}}\) such that \(q>1/r_{k}\) and \(q\in \overline{U_{2n}(K)}\setminus Q\) and define the path \(\gamma _{0,q}^{+}:[r_{k},\widetilde{r}_{k}]\rightarrow {\mathbb {C}}\), \(\gamma _{0,q}^{+}(t):=q+it\). We deduce that for \(m_{k}\in {\mathbb {N}}\), \((1/m_{k})<\min (r_{k},1/(2n))\), and every \(e'\in E'\)

$$\begin{aligned} \left| \int _{\gamma _{0,q}^{+}}\langle e',F(\zeta )\varphi (\zeta )\rangle \mathrm{d}\zeta \right|&\le \int _{r_{k}}^{\widetilde{r}_{k}}e^{(a_{n}-a_{m_k})| {{\,\mathrm{Re}\,}}(q+it)|^{\beta }}\mathrm{d}t \Vert \varphi \Vert _{n} |e'\circ F|_{m_{k}}\\&=(\widetilde{r}_{k}-r_{k})e^{(a_{n}-a_{m_k})q^{\beta }}\Vert \varphi \Vert _{n} |e'\circ F|_{m_{k}} \underset{(3)}{\le } (\widetilde{r}_{k}-r_{k})\Vert \varphi \Vert _{n}|e'\circ F|_{m_{k}}\varepsilon . \end{aligned}$$

In the same way we obtain with \(\gamma _{0,q}^{-} :[-\widetilde{r}_{k},-r_{k}]\rightarrow {\mathbb {C}}\), \(\gamma _{0,q}^{-}(t):=q+it\), that

$$\begin{aligned} \left| \int _{\gamma _{0,q}^{-}}\langle e',F(\zeta )\varphi (\zeta ) \rangle \mathrm{d}\zeta \right| \le (\widetilde{r}_{k}-r_{k})\Vert \varphi \Vert _{n}| e'\circ F|_{m_{k}}\varepsilon . \end{aligned}$$

Hence we get (4) by Cauchy’s integral theorem and the Hahn-Banach theorem as well. The remaining cases follow similarly.

(d) The proof is similar to (c). Let \(F\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\). Again, it suffices to prove that

$$\begin{aligned} \int _{\gamma _{K,n,r}}\langle e',F(\zeta )\varphi (\zeta )\rangle \mathrm{d}\zeta =0,\quad e'\in E'. \end{aligned}$$

This follows from Cauchy’s integral theorem and the Hahn-Banach theorem if \(K\subset {\mathbb {R}}\). Again, we only consider the case \(\infty \in K\), \(-\infty \not \in K\) and only need to show that

$$\begin{aligned} \int _{\gamma _{k}}\langle e',F(\zeta )\varphi (\zeta )\rangle \mathrm{d}\zeta =0, \quad e'\in E', \end{aligned}$$

where \(\gamma _{k}\) is the part of \(\gamma _{K,n,r}\) in the unbounded component of \(U_{n}(K)\). Let \(\varepsilon >0\) and choose q as in (c). Then we have with \(\gamma _{0,q}:[-r_{k},r_{k}]\rightarrow {\mathbb {C}}\), \(\gamma _{0,q}(t):=q+it\), that

$$\begin{aligned} \left| \int _{\gamma _{0,q}}\langle e',F(\zeta )\varphi (\zeta )\rangle \mathrm{d}\zeta \right| \le 2r_{k}\Vert \varphi \Vert _{n}|e'\circ F|_{2n}\varepsilon \end{aligned}$$

for every \(e'\in E'\). Cauchy’s integral theorem and the Hahn-Banach theorem imply our statement. \(\square\)

An essential role in the proof of \({\mathcal {O}}({\mathbb {C}}\setminus K,E)/{\mathcal {O}}({\mathbb {C}},E)\cong L_{b}({\mathscr {A}}(K),E)\) for non-empty compact \(K\subset {\mathbb {R}}\) and quasi-complete E (see (2)) plays the fundamental solution \(z\mapsto 1/(\pi z)\) of the Cauchy-Riemann operator. By the identity theorem we can consider \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) as a subspace of \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)\) and we equip the quotient space \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) with the induced locally convex quotient topology (which may not be Hausdorff, see Remark 14). We want to prove the isomorphy

$$\begin{aligned} {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/ {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E) \cong L_{b}({\mathcal {O}}^{-\beta }_{(a_n)}(K),E) \end{aligned}$$

for non-empty compact \(K\subset \overline{{\mathbb {R}}}\) under some assumptions on K, \(\beta\) and \((a_{n})_{n\in {\mathbb {N}}}\). Since we have to deal with functions having some growth given by our exponential weights, we have to use the adapted fundamental solution \(z\mapsto e^{-z^{2}}/(\pi z)\) of the Cauchy-Riemann operator.

Proposition 9

Let \(\gamma _{K,n,r}\) be the path from Definition 7. The map

$$\begin{aligned} H_{K}:{\mathcal {O}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}},E) \rightarrow L_{b}({\mathcal {O}}^{-\beta }_{(a_n)}(K),E) \end{aligned}$$

given by

$$\begin{aligned} H_{K}(f)(\varphi ):=\int _{\gamma _{K,n,r}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta \end{aligned}$$

for \(f=[F]\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) and \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\), \(n\in {\mathbb {N}}\), is well-defined, linear and continuous. For all non-empty compact sets \(K_{1}\subset K\) it holds that

$$\begin{aligned} {H_{K}}_{\mid {\mathcal {O}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}}\setminus K_{1},E)/{\mathcal {O}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}},E)}=H_{K_{1}} \end{aligned}$$
(5)

on \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\).

Proof

In the following we omit the index K of \(H_{K}\) if no confusion seems to be likely. Let \(f=[F]\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) and \(\varphi \in {\mathcal {O}}^{-\beta }_{(a_n)}(K)\). Then there is \(n\in {\mathbb {N}}\) such that \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\). Due to Proposition 8 (a) and (d) \(H(f)(\varphi )\in E\) and H(f) is independent of the representative F of f. From Proposition 8 (c) it follows that H(f) is well-defined on \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\), i.e. for all \(k\in {\mathbb {N}}\), \(k\ge n\), and \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\) it holds that

$$\begin{aligned} H(f)(\varphi )=H(f)(\varphi _{\mid U_{k}(K)})=H(f)(\pi _{n,k}(\varphi )). \end{aligned}$$

For all \(n\in {\mathbb {N}}\) there are \(m\in {\mathbb {N}}\) and \(C>0\) such that

$$\begin{aligned} p_{\alpha }(H(f)(\varphi )) \le C |F|_{m,\alpha }\Vert \varphi \Vert _{n} \end{aligned}$$
(6)

for all \(f=[F]\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\), \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\) and \(\alpha \in {\mathfrak {A}}\) by Proposition 8 (b), which implies that \(H(f)\in L\left({\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right) ,E\right)\) for every \(n\in {\mathbb {N}}\). We deduce that \(H(f)\in L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\) by [9, 3.6 Satz, p. 117]. Let

$$\begin{aligned} q:{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E) \rightarrow {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/ {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E), \; q(F):=[F], \end{aligned}$$

denote the quotient map. We equip the quotient space with its usual quotient topology generated by the system of quotient seminorms given by

$$\begin{aligned} |f|_{l,\alpha }^{\wedge }:=\inf _{F\in q^{-1}(f)}|F|_{l,\alpha }, \quad f\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/ {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E), \end{aligned}$$

for \(l\in {\mathbb {N}}\) and \(\alpha \in {\mathfrak {A}}\). Then the quotient space, equipped with these seminorms, is a locally convex space (but maybe not Hausdorff). Since (6) holds for every representative F of f, we obtain for every \(f\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\), \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\), \(n\in {\mathbb {N}}\), and \(\alpha \in {\mathfrak {A}}\) that

$$\begin{aligned} p_{\alpha }(H(f)(\varphi )) \le C \inf _{F\in q^{-1}(f)}|F|_{m,\alpha }\Vert \varphi \Vert _{n} = C|f|_{m,\alpha }^{\wedge }\Vert \varphi \Vert _{n}. \end{aligned}$$
(7)

Now, let \(M\subset {\mathcal {O}}^{-\beta }_{(a_n)}(K)\) be a bounded set. Since the sequence \((B_{n})_{n\in {\mathbb {N}}}\) of closed unit balls \(B_n\) of \({\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\) is a fundamental system of bounded sets in \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) by [25, Proposition 25.19, p. 303], there exist \(n\in {\mathbb {N}}\) and \(\lambda >0\) with \(M\subset \lambda B_{n}\). We derive from (7) that

$$\begin{aligned} \sup _{\varphi \in M}p_{\alpha }(H(f)(\varphi )) \le |\lambda | C|f|_{m, \alpha }^{\wedge }, \end{aligned}$$

proving the continuity of H.

Moreover, let \(K_{1}\subset \overline{{\mathbb {R}}}\) be compact and \(K_{1}\subset K\). We observe that for every \(F\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K_{1},E)\) and \(\varphi \in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\), \(n\in {\mathbb {N}}\), it holds that

$$\begin{aligned} H_{K}([F])(\varphi )=\int _{\gamma _{K,n,r}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta =\int _{\gamma _{K_{1},n,r}}F(\zeta )\varphi (\zeta )\mathrm{d}\zeta =H_{K_{1}}([F])(\varphi ) \end{aligned}$$

by Cauchy’s integral theorem and the Hahn-Banach theorem like in Proposition 8 (c) and (d). This yields to

$$\begin{aligned} {H_{K}}_{\mid {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}} \setminus K_{1},E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)} =H_{K_{1}} \end{aligned}$$

on \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\). \(\square\)

Now, we take a closer look at the potential inverse of \(H_{K}\).

Proposition 10

The map

$$\begin{aligned} \varTheta _{K}:L_{b}({\mathcal {O}}^{-\beta }_{(a_n)}(K),E) \rightarrow {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/ {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E) \end{aligned}$$

given by

$$\begin{aligned} \varTheta _{K}(T) :=\left[ {\mathbb {C}}\setminus K \ni z\longmapsto \frac{1}{2\pi i}\left\langle T,\frac{e^{(z-\cdot )^2}}{z-\cdot } \right\rangle \right] , \quad T\in L_{b} ({\mathcal {O}}^{-\beta }_{(a_n)}(K),E), \end{aligned}$$

is well-defined, linear and continuous.

Proof

We start with the proof that the map \(\varTheta _{K}\) is well-defined and take a closer look at its components. For \(z,\zeta \in {\mathbb {C}}\) we set \(G(z,\zeta ):=e^{-(z-\zeta )^2}\) and note that \(\tfrac{\partial }{\partial z}G(z,\zeta )=-2(z-\zeta )G(z,\zeta )\). We remark that for all \(z=z_{1}+iz_{2}\in {\mathbb {C}}\) and all \(n\in {\mathbb {N}}\)

$$\begin{aligned} \Vert G(z,\cdot )\Vert _{n}&=\sup _{\zeta \in \overline{U_{n}(K)}} e^{-{{\,\mathrm{Re}\,}}((z-\zeta )^{2})}e^{-a_{n}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }}\nonumber \\&\le \sup _{\zeta _{1}+i\zeta _{2}\in \overline{U_{n}(K)}} e^{-(z_{1}-\zeta _{1})^{2}+(z_{2}-\zeta _{2})^{2}} e^{|a_{n}|(1+|\zeta _{1}|)}\nonumber \\&\le e^{(|z_{2}|+1/n)^{2}-z_{1}^{2}+|a_{n}|} \sup _{\zeta _{1}+i\zeta _{2}\in \overline{U_{n}(K)}} e^{-\zeta _{1}^{2}+(2|z_{1}|+|a_{n}|)|\zeta _{1}|}\nonumber \\&\le e^{(|z_{2}|+1/n)^{2}-z_{1}^{2}+|a_{n}|} e^{-(|z_{1}|+|a_{n}|/2)^{2}+(2|z_{1}|+|a_{n}|)(|z_{1}|+|a_{n}|/2)} \end{aligned}$$
(8)

and we deduce that \(G(z,\cdot )\in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\), in particular \(G({\mathbb {B}}_{1/n} (z),\cdot )\subset {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\). For \(\zeta =\zeta _{1}+i\zeta _{2}\in \overline{U_{n}(K)}\) and \(h\in {\mathbb {C}}\), \(0<|h|\le 1\), we observe that

$$\begin{aligned}&\left| \frac{G(z+h,\zeta )-G(z,\zeta )}{h}-(-2(z-\zeta )G(z,\zeta ))\right| e^{-a_{n}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }}\\&\quad =\left| \left( \frac{e^{-2(z-\zeta )h-h^{2}}}{h} -\frac{1}{h}+2(z-\zeta )\right) G(z,\zeta )\right| e^{-a_{n}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }}\\&\quad =\left| \left( -h+h\sum _{k=2}^{\infty } \frac{1}{k!}(-2(z-\zeta )-h)^{k}h^{k-2}\right) G(z,\zeta )\right| e^{-a_{n}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }}\\&\quad \le |h|\left( 1+\sum _{k=2}^{\infty }\frac{1}{k!} (2|z-\zeta |+1)^{k}\right) |G(z,\zeta )|e^{-a_{n}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }}\\&\quad \le |h|e^{2|z-\zeta |+1}e^{-{{\,\mathrm{Re}\,}}((z-\zeta )^{2})}e^{-a_{n}| {{\,\mathrm{Re}\,}}(\zeta )|^{\beta }}\\&\quad \le |h|e^{2|z|+2|\zeta _{2}|+2|\zeta _{1}|+1} e^{-(z_{1}-\zeta _{1})^{2}+(z_{2}-\zeta _{2})^{2}} e^{-a_{n}|\zeta _{1}|^{\beta }}\\&\quad \le |h|e^{2|z|+(2/n)+1-z_{1}^{2}+(|z_{2}|+1/n)^{2} +|a_{n}|}e^{-\zeta _{1}^{2}+(2|z_{1}|+2+|a_{n}|)|\zeta _{1}|}\\&\quad \le |h|e^{2|z|+(2/n)+1-z_{1}^{2}+(|z_{2}|+1/n)^{2}+|a_{n}|} e^{-(|z_{1}|+1+|a_{n}|/2)^{2}+(2|z_{1}|+2+|a_{n}|)(|z_{1}| +1+|a_{n}|/2)}=:|h|C_{0}, \end{aligned}$$

yielding to

$$\begin{aligned} \left\| \frac{G(z+h,\cdot )-G(z,\cdot )}{h}-(-2(z-\cdot )) G(z,\cdot )\right\| _{n} \le |h|C_{0}\underset{h\rightarrow 0}{\rightarrow } 0. \end{aligned}$$
(9)

We conclude that \(\tfrac{\partial }{\partial z}G(z,\cdot ) =-2(z-\cdot )G(z,\cdot )\in {\mathcal {O}}_{a_n}^{-\beta } \left( {\overline{{U_{n} (K)}} } \right)\) (inequality above and triangle inequality) holds.

For \(z\in {\mathbb {C}}\setminus K\) and \(\zeta \in {\mathbb {C}}\setminus \{z\}\) we define

$$\begin{aligned} g(z,\zeta ):=\frac{G(z,\zeta )}{z-\zeta }=\frac{e^{-(z-\zeta )^2}}{z-\zeta } \end{aligned}$$

and note that \(g(z,\cdot )\in {\mathcal {O}}({\mathbb {C}}\setminus \{z\})\). For \(z\in {\mathbb {C}}\setminus K\) there is \(k=k(z)\in {\mathbb {N}}\) such that

$$\begin{aligned} \mathrm{d}_{k}:=\mathrm{d}({\mathbb {B}}_{1/k}(z), \overline{U_{k}(K)})>0 \end{aligned}$$

and we obtain

$$\begin{aligned} \Vert g(w,\cdot )\Vert _{k} =\sup _{\zeta \in \overline{U_{k}(K)}} \frac{1}{|w-\zeta |}|G(w,\zeta )|e^{-a_{k}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }} \le \frac{1}{\mathrm{d}(\{w\}, \overline{U_{k}(K)})}\Vert G(w,\cdot )\Vert _{k} \underset{(8)}{<}\infty \end{aligned}$$

for all \(w\in {\mathbb {B}}_{1/k}(z)\). We deduce that \(g(w,\cdot )\in {\mathcal {O}}_{a_k}^{-\beta }\left(\overline{U_{k}(K)}\right)\) for all \(w\in {\mathbb {B}}_{1/k}(z)\). Moreover, we observe that

$$\begin{aligned} \frac{\partial }{\partial z}g(z,\zeta ) =\frac{\tfrac{\partial }{\partial z}G(z,\zeta )}{z-\zeta } -\frac{G(z,\zeta )}{(z-\zeta )^{2}} =-\left( 2+\frac{1}{(z-\zeta )^{2}}\right) G(z,\zeta ) \end{aligned}$$

for all \(\zeta \in \overline{U_{k}(K)}\). Let \(h\in {\mathbb {C}}\) with \(0<|h|<1/k\). Then

$$\begin{aligned} \left| \frac{1}{z+h-\zeta }-\frac{1}{z-\zeta }\right| =\left| \frac{-h}{(z+h-\zeta )(z-\zeta )}\right| \le \frac{|h|}{\mathrm{d}_{k}^2} \end{aligned}$$

and

$$\begin{aligned} \left| \frac{1}{h}\left( \frac{1}{z+h-\zeta }-\frac{1}{z-\zeta }\right) +\frac{1}{(z-\zeta )^{2}}\right| = \left| \frac{h}{(z+h-\zeta ) (z-\zeta )^{2}}\right| \le \frac{|h|}{\mathrm{d}_{k}^3} \end{aligned}$$

for all \(\zeta \in \overline{U_{k}(K)}\). It follows that

$$\begin{aligned}&\left| \frac{g(z+h,\zeta )-g(z,\zeta )}{h} -\frac{\partial }{\partial z}g(z,\zeta )\right| \\&\quad \le \frac{1}{|z+h-\zeta |}\left| \frac{G(z+h,\zeta )-G(z,\zeta )}{h} -\frac{\partial }{\partial z}G(z,\zeta )\right| +\left| \frac{\partial }{\partial z}G(z,\zeta )\right| \left| \frac{1}{z+h-\zeta }-\frac{1}{z-\zeta }\right| \\&\qquad + |G(z,\zeta )| \left| \frac{1}{h} \left( \frac{1}{z+h-\zeta }-\frac{1}{z-\zeta }\right) +\frac{1}{(z-\zeta )^{2}}\right| \end{aligned}$$

for all \(\zeta \in \overline{U_{k}(K)}\), which implies

$$\begin{aligned}&\left\| \frac{g(z+h,\cdot )-g(z,\cdot )}{h}-\frac{\partial }{\partial z} g(z,\cdot )\right\| _{k}\\&\quad \le \frac{1}{\mathrm{d}_{k}}\left\| \frac{G(z+h)-G(z)}{h} -\frac{\partial }{\partial z}G(z,\cdot )\right\| _{k} +\left\| \frac{\partial }{\partial z}G(z,\cdot )\right\| _{k} \frac{|h|}{\mathrm{d}_{k}^2}+\Vert G(z)\Vert _ {k}\frac{|h|}{\mathrm{d}_{k}^3}. \end{aligned}$$

We conclude that \(\tfrac{\partial }{\partial z}g(z,\cdot )\in {\mathcal {O}}_{a_k}^{-\beta }\left(\overline{U_{k}(K)}\right)\) and \(\tfrac{g(z+h,\cdot )-g(z,\cdot )}{h}\) converges to \(\tfrac{\partial }{\partial z}g(z,\cdot )\) in the space \({\mathcal {O}}_{a_k}^{-\beta }\left(\overline{U_{k}(K)}\right)\) as \(h\rightarrow 0\) by (9). Hence for all \(T\in L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\) the limit

$$\lim\limits_{\substack{h\to 0\\h\in\mathbb{C},\,h\neq 0}} \frac{{\langle T,g(z + h, \cdot )\rangle - \langle T,g(z, \cdot )\rangle }}{h} = \left\langle \lim\limits_{\substack{h\to 0\\h\in\mathbb{C},\,h\neq 0}} \frac{{g(z + h, \cdot ) - g(z, \cdot )}}{h} \right\rangle = \left\langle {T,\frac{\partial }{{\partial z}}g(z, \cdot )} \right\rangle$$

exists in E, meaning that \((z\mapsto \frac{1}{2\pi i}\langle T,\frac{e^{(z-\cdot )^2}}{z-\cdot }\rangle )\in {\mathcal {O}}({\mathbb {C}}\setminus K,E)\).

Let us turn to the continuity of \(\varTheta _{K}\). Let \(n\in {\mathbb {N}}\). We note that for \(\zeta _{1},z_{1}\in {\mathbb {R}}\)

$$\begin{aligned} -a_{2n}|\zeta _{1}|^{\beta }+a_{n}|z_{1}|^{\beta } \le |a_{2n}||z_{1}-\zeta _{1}|^{\beta } \le |a_{2n}|(1+|z_{1}-\zeta _{1}|). \end{aligned}$$

It follows that

$$\begin{aligned} \sup _{z\in S_{n}(K)}\Vert G(z,\cdot )\Vert _{K,2n}e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}&=\sup _{z\in S_{n}(K)}\sup _{\zeta \in \overline{U_{2n}(K)}} e^{-{{\,\mathrm{Re}\,}}((z-\zeta )^{2})} e^{-a_{2n}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }} e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\nonumber \\&\le e^{(n+1/(2n))^{2}}\sup _{z_{1}\in {\mathbb {R}}}\sup _{\zeta _{1}\in {\mathbb {R}}} e^{-(z_{1}-\zeta _{1})^{2}-a_{2n}|\zeta _{1}|^{\beta } +a_{n}|z_{1}|^{\beta }}\nonumber \\&\le e^{(n+1/(2n))^{2}+|a_{2n}|}\sup _{z_{1}\in {\mathbb {R}}}\sup _{\zeta _{1}\in {\mathbb {R}}} e^{-(z_{1}-\zeta _{1})^{2}+|a_{2n}||z_{1}-\zeta _{1}|}\nonumber \\&\le e^{(n+1/(2n))^{2}+|a_{2n}|}\sup _{x\in {\mathbb {R}}}e^{-x^{2}+|a_{2n}|x}\nonumber \\&= e^{(n+1/(2n))^{2}+|a_{2n}|}e^{-(a_{2n}/2)^{2}+a_{2n}^{2}/2}, \end{aligned}$$
(10)

which yields, in particular, that \(G(S_{n}(K),\cdot )\subset {\mathcal {O}}_{a_{2n}}^{-\beta }\left(\overline{U_{2n}(K)}\right)\). Moreover, there is \(k\in {\mathbb {N}}\) such that

$$\begin{aligned} \mathrm{D}_{n,k}:=\mathrm{d}(S_{n}(K),\overline{U_{k}(K)})>0. \end{aligned}$$

Again, it follows that \(g(S_{n}(K), \cdot )\subset {\mathcal {O}}_{a_m}^{-\beta }\left(\overline{U_{m}(K)}\right)\) with \(m:=\max (2n,k)\). Furthermore, we observe that \(M:=\{g(z,\cdot )e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\;|\;z\in S_{n}(K)\}\subset {\mathcal {O}}_{a_m}^{-\beta }\left(\overline{U_{m}(K)}\right)\) and

$$\begin{aligned} \sup _{\varphi \in M}\Vert \varphi \Vert _{m}=\sup _{z\in S_{n}(K)} \Vert g(z,\cdot )\Vert _{K,m}e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \le \frac{1}{\mathrm{D}_{n,k}}\sup _{z\in S_{n}(K)}\Vert G(z,\cdot ) \Vert _{K,2n}e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \underset{(10)}{<}\infty , \end{aligned}$$

showing that M is bounded in \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) by [25, Proposition 25.19, p. 303]. For every \(\alpha \in {\mathfrak {A}}\) and \(T\in L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\) we have

$$\begin{aligned} |\varTheta _{K}(T)|_{n,\alpha }^{\wedge }&\le \left| z\mapsto \frac{1}{2\pi i}\langle T,g(z,\cdot )\rangle \right| _{n,\alpha } =\frac{1}{2\pi }\sup _{\varphi \in M}p_{\alpha }(T(\varphi )) \end{aligned}$$

and therefore the map \(\varTheta _{K}:L_{b}({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\rightarrow {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) is well-defined, clearly linear and continuous. \(\square\)

The map \(\varTheta _{K}\) is sometimes called (weighted) Cauchy transformation for obvious reasons (see [26, p. 84]).

Theorem 11

If \(K\subset {\mathbb {R}}\) or \(K\cap \{\pm \infty \}\) has no isolated points in K, then the map

$$\begin{aligned} H_{K}:{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/ {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E) \rightarrow L_{b}({\mathcal {O}}^{-\beta }_{(a_n)}(K),E) \end{aligned}$$

is a topological isomorphism with inverse \(\varTheta _{K}\).

Proof

As before we omit the index K of \(H_{K}\) and \(\varTheta _{K}\) if it is not necessary. As a consequence of Proposition 9 and Proposition 10 the maps H and \(\varTheta\) are linear and continuous. First, we prove that \(\varTheta \circ H={{\,\mathrm{id}\,}}\) on \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\), which implies the injectivity of H. Let \(p\in {\mathbb {N}}\), \(p\ge 2\). We choose \(n\in {\mathbb {N}}\) such that \(\mathrm{d}(S_{p}(K),\overline{U_{n}(K)})>0\). We define the path \(\varGamma _{p}:=\varGamma _{-}-\varGamma _{+}\) with

$$\begin{aligned} \varGamma _{\pm }:{\mathbb {R}}\rightarrow {\mathbb {C}},\;\varGamma _{\pm }(t):=t\pm ip, \end{aligned}$$

Further, we choose \(m\in {\mathbb {N}}\) such that \(1/m<\min _{1\le j\le k}r_{j}<1/n\) and \(m>p\) where \(r=(r_{j})_{1\le j\le k}\) is from the path \(\gamma _{K,n,r}\) in the definition of H. Due to this choice \(\varGamma _{\pm }\) and \(\gamma _{K,n,r}\) are within \(S_{m}(K)\).

Let \(f=[F]\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) and \(z=x+iy\in S_{p}(K)\). Let \(u\in {\mathbb {R}}\), \(u\ne x\), and \([t_{0},t_{1}]\subset [-p,p]\) such that the path \(\gamma _{u}:[t_{0},t_{1}]\rightarrow {\mathbb {C}}\), \(\gamma _{u}(t):=u+it\), is within \(S_{m}(K)\). The map \(\zeta \mapsto F(\zeta )\frac{e^{-(z-\zeta )^{2}}}{z-\zeta }\) is holomorphic on \({\mathbb {C}}\setminus \{z\}\) with values in E and like in Proposition 8 (a) and (b) we deduce that it is Pettis-integrable along \(\gamma _{u}\) and \({\varGamma _{\pm }}_{\mid [s_{0},s_{1}]}\) with \([s_{0},s_{1}]\subset {\mathbb {R}}\) using [5, Proposition 2, p. 354] and the Mackey-Arens theorem. Then we have

$$\begin{aligned}&\left| \left\langle e',\int _{\gamma _{u}}F(\zeta ) \frac{e^{-(z-\zeta )^{2}}}{\zeta -z}\mathrm{d}\zeta \right\rangle \right| \\&\quad \le |e'\circ F|_{m}\int ^{t_{1}}_{t_{0}}|e^{-(z-(u+it))^{2}}| e^{-a_{m}|{{\,\mathrm{Re}\,}}(u+it)|^{\beta }} \frac{1}{|z-u-it|}\mathrm{d}t\\&\quad \le |e'\circ F|_{m}(t_{1}-t_{0})e^{-(x-u)^{2}+(y-t)^{2}} e^{-a_{m}|u|^{\beta }} \frac{1}{|x-u|}\\&\quad \le \frac{1}{|x-u|}|e'\circ F|_{m}(t_{1}-t_{0}) e^{(y-t)^{2}-x^{2}+|a_{m}|}\sup _{w\in {\mathbb {R}}}e^{-w^2+(2|x|+|a_{m}|)w}\\&\quad =\frac{1}{|x-u|}|e'\circ F|_{m}(t_{1}-t_{0}) e^{(y-t)^{2}-x^{2}+|a_{m}|} e^{-(|x|+|a_{m}|/2)^{2} +(2|x|+|a_{m}|)(|x|+|a_{m}|/2)}\underset{|u|\rightarrow \infty }{\rightarrow } 0 \end{aligned}$$

for all \(e'\in E'\). Hence we derive from Cauchy’s integral formula that

$$\begin{aligned} \langle e',F(z)\rangle =\frac{1}{2\pi i}\int _{\varGamma _{p}-\gamma _{K,n,r}} \left\langle e',F(\zeta )\frac{e^{-(z-\zeta )^{2}}}{\zeta -z} \right\rangle \mathrm{d}\zeta =-\frac{1}{2\pi i}\int _{\varGamma _{p}-\gamma _{K,n,r}} \left\langle e',F(\zeta )\frac{e^{-(z-\zeta )^{2}}}{z-\zeta } \right\rangle \mathrm{d}\zeta \end{aligned}$$

for all \(e'\in E'\) and \(z\in S_{p}(K)\). Thus we have

$$\begin{aligned} F(z)=-\frac{1}{2\pi i}\int _{\varGamma _{p}-\gamma _{K,n,r}} F(\zeta )\frac{e^{-(z-\zeta )^{2}}}{z-\zeta }\mathrm{d}\zeta \end{aligned}$$

for all \(z\in S_{p}(K)\). By (the proof) of Proposition 10 the function \(g(z,\cdot )=\frac{e^{-(z-\cdot )^{2}}}{z-\cdot } \in {\mathcal {O}}^{-\beta }_{(a_n)}(K)\) for all \(z\in {\mathbb {C}}\setminus K\) and

$$\begin{aligned} W:{\mathbb {C}}\setminus K\rightarrow E,\; W(z):=\frac{1}{2\pi i} H([F]) \left( \frac{e^{-(z-\cdot )^{2}}}{z-\cdot }\right) -F(z), \end{aligned}$$

is an element of \({\mathcal {O}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}}\setminus K,E)\) since \(T:=H([F])\in L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\) by Proposition 9. It follows that

$$\begin{aligned} W(z)&= \frac{1}{2\pi i}\int _{\gamma _{K,n,r}}F(\zeta ) \frac{e^{-(z-\zeta )^{2}}}{z-\zeta }\mathrm{d}\zeta +\frac{1}{2\pi i}\int _{\varGamma _{p}-\gamma _{K,n,r}} F(\zeta )\frac{e^{-(z-\zeta )^{2}}}{z-\zeta }\mathrm{d}\zeta \nonumber \\&=\frac{1}{2\pi i}\int _{\varGamma _{p}}F(\zeta ) \frac{e^{-(z-\zeta )^{2}}}{z-\zeta }\mathrm{d}\zeta =:W_{p}(z) \end{aligned}$$
(11)

for all \(z\in S_{p}(K)\). But the right-hand side \(W_{p}\) of (11), as a function in z, is weakly holomorphic on \(S_{p}(\varnothing )=\{z\in {\mathbb {C}}\;|\;|{{\,\mathrm{Im}\,}}(z)|<p\}\), which follows from

$$\begin{aligned} \left\langle {e^{\prime},W_{p} (z)} \right\rangle & = \left\langle {e^{\prime},\frac{1}{{2\pi i}}\int_{{\varGamma _{p} }} F (\zeta )\frac{{e^{{ - (z - \zeta )^{2} }} }}{{z - \zeta }}{\text{d}}\zeta } \right\rangle \\ & = \frac{1}{{2\pi i}}\int_{{\varGamma _{p} }} {e'} \left( {F(\zeta )} \right)\frac{{e^{{ - (z - \zeta )^{2} }} }}{{z - \zeta }}{\text{d}}\zeta ,\quad e'\in E', \\ \end{aligned}$$

and differentiation under the integral sign. The weak holomorphy and the sequential completeness of E imply that \(W_{p}\) is holomorphic on \(S_{p}(\varnothing )\) by [10, Corollary 2, p. 404]. Thus W is extended by \(W_{p}\) to a function in \({\mathcal {O}}({\mathbb {C}},E)\) and the extensions for each \(p\in {\mathbb {N}}\) coincide because of the identity theorem. We denote this extension by W as well.

Then we have for \(z=x+iy\in \overline{S_{1/n}}:=\{w\in {\mathbb {C}}\;|\; |{{\,\mathrm{Im}\,}}(w)|\le (1/n)\}\subset S_{2n}(\varnothing )\)

$$\begin{aligned}&2\pi |\langle e',W(z)\rangle |\\&\quad =2\pi |\langle e',W_{2n}(z)\rangle |=\left| \int _{\varGamma _{2n}} e'(F(\zeta ))\frac{e^{-(z-\zeta )^{2}}}{z-\zeta }\mathrm{d}\zeta \right| \\&\quad \le \int _{-\infty }^{\infty }|e'(F(t-2ni))| \frac{|e^{-(z-(t-2ni))^{2}}|}{|z-(t-2ni)|}\mathrm{d}t +\int _{-\infty }^{\infty }|e'(F(t+2ni))| \frac{|e^{-(z-(t+2ni))^{2}}|}{|z-(t+2ni)|}\mathrm{d}t\\&\quad \le \left( \frac{1}{|y+2n|}+\frac{1}{|y-2n|}\right) \max \int _{-\infty }^{\infty }|e^{-(z-(t\pm 2ni))^{2}}| e^{-a_{4n}|{{\,\mathrm{Re}\,}}(z-(t\pm 2ni))|^{\beta }}\mathrm{d}t\,|e'\circ F|_{K,4n}\\&\quad \le 2\frac{1}{2n-\frac{1}{n}}\max \int _{-\infty }^{\infty }| e^{-(z-(t\pm 2ni))^{2}}|e^{-a_{4n}|{{\,\mathrm{Re}\,}}(z-(t\pm 2ni))|^{\beta }} \mathrm{d}t\,|e'\circ F|_{K,4n}. \end{aligned}$$

Moreover, in combination with the estimate

$$\begin{aligned}&\int _{-\infty }^{\infty }|e^{-(z-(t\pm 2ni))^{2}}| e^{-a_{4n}|{{\,\mathrm{Re}\,}}(z-(t\pm 2ni))|^{\beta }}e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\mathrm{d}t\\&\quad =\int _{-\infty }^{\infty }e^{-{{\,\mathrm{Re}\,}}((z-(t\pm 2ni))^{2})} e^{a_{n}|x|^{\beta }-a_{4n}|t|^{\beta }}\mathrm{d}t \le e^{(y\mp 2n)^{2}} \int _{-\infty }^{\infty }e^{-(x-t)^{2}}e^{|a_{4n}||x-t|^{\beta }}\mathrm{d}t\\&\quad \le e^{((1/n)+2n)^{2}+|a_{4n}|}\int _{-\infty }^{\infty } e^{-(x-t)^{2}}e^{|a_{4n}||x-t|}\mathrm{d}t=2e^{((1/n)+2n)^{2} +|a_{4n}|+a_{4n}^{2}/4}\int _{-|a_{4n}|/2}^{\infty }e^{-t^{2}}\mathrm{d}t\\&\quad \le 2\sqrt{\pi }e^{((1/n)+2n)^{2}+|a_{4n}|+a_{4n}^{2}/4}=:C \end{aligned}$$

we get for all \(\alpha \in {\mathfrak {A}}\)

$$\mathop {\sup }\limits_{{z \in \overline{{S_{{1/n}} }} }} p_{\alpha } (W(z))e^{{a_{n} |{\kern 1pt} {\text{Re}}{\kern 1pt} (z)|^{\beta } }} = \mathop {\sup }\limits_{{e^{\prime} \in B_{\alpha }^{^\circ } }}\sup\limits_{\substack{0\leq |y|\leq\frac{1}{n}\\x\in\mathbb{R}}} |\langle e^{\prime},W(x + iy)\rangle |e^{{a_{n} |{\kern 1pt} {\text{Re}}{\kern 1pt} (x + iy)|^{\beta } }} \le \frac{{C|F|_{{K,4n,\alpha }} }}{{\pi \left( {2n - \frac{1}{n}} \right)}},$$

yielding to

$$\begin{aligned} |W|_{\varnothing ,n,\alpha } =\sup _{z\in S_{n}(\varnothing )}p_{\alpha }(W(z))e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \le \max \left( |W|_{K,n,\alpha },\sup _{z\in \overline{S_{1/n}}} p_{\alpha }(W(z))e^{a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) <\infty . \end{aligned}$$

Hence \(W\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) and thus

$$\begin{aligned} (\varTheta \circ H)(f)=\left[ z\mapsto \frac{1}{2\pi i} H([F]) \left( \frac{e^{-(z-\cdot )^{2}}}{z-\cdot }\right) -F(z)\right] +f =[W]+f=f, \end{aligned}$$

i.e. H is injective.

Second, we prove that \(H\circ \varTheta ={{\,\mathrm{id}\,}}\) on \(L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\), which implies the surjectivity of H. Due to the Hahn-Banach theorem this is equivalent to the condition that

$$\begin{aligned} e'((H\circ \varTheta )(T)(\varphi ))=e'(T(\varphi )) \end{aligned}$$

holds for all \(T\in L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\), \(\varphi \in {\mathcal {O}}^{-\beta }_{(a_n)}(K)\) and \(e'\in E'\). As

$$\begin{aligned} e'((H\circ \varTheta )(T)(\varphi )) =(H\circ \varTheta )(e'\circ T)(\varphi ) \end{aligned}$$

for all \(T\in L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\), \(\varphi \in {\mathcal {O}}^{-\beta }_{(a_n)}(K)\) and \(e'\in E'\), it suffices to show the result for \(E={\mathbb {C}}.\)

Since the span of the set of point evaluations of complex derivatives \(\{\delta _{x_{0}}^{(n)}\;|\; x_{0}\in K\cap {\mathbb {R}},\,n\in {\mathbb {N}}_{0}\}\) is dense in \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\) by virtue of Proposition 4 (b), we only need to show that \((H\circ \varTheta )(\delta _{x_{0}}^{(n)})(\varphi ) =\langle \delta _{x_{0}}^{(n)},\varphi \rangle\) for all \(x_{0}\in K\cap {\mathbb {R}}\), \(n\in {\mathbb {N}}_{0}\) and \(\varphi \in {\mathcal {O}}^{-\beta }_{(a_n)}(K)\). Let \(x_{0}\in K\cap {\mathbb {R}}\) and \(n\in {\mathbb {N}}_{0}\). Now, we have

$$\begin{aligned} (H\circ \varTheta )(\delta _{x_{0}}^{(n)})(\varphi ) =\frac{1}{2\pi i}\int _{\gamma _{K,k,r}} \left\langle \delta _{x_{0}}^{(n)},\frac{e^{-(z-\cdot )^{2}}}{z-\cdot } \right\rangle \varphi (z)\mathrm{d}z \end{aligned}$$
(12)

for all \(\varphi \in {\mathcal {O}}_{a_k}^{-\beta } \left(\overline{U_{k}(K)}\right)\), \(k\in {\mathbb {N}}\). Let us take a closer look at the integral on the right-hand side of (12). Let \(m\in {\mathbb {N}}\), \(m\ge 2\). Then \(\frac{e^{-(z-\cdot )^{2}}}{z-\cdot }\in {\mathcal {O}} ({\mathbb {B}}_{1/m}(x_{0}))\) for every \(z\in S_{m}(\{x_{0}\})\). We fix the notation \(g_{z}(\zeta ):=\frac{e^{-(z-\zeta )^{2}}}{z-\zeta }\) for \(z\in S_{m}(\{x_{0}\})\) and \(\zeta \in {\mathbb {B}}_{1/m}(x_{0})\). Then we get by Cauchy’s inequality

$$\begin{aligned} |g_{z}^{\,(n)}(x_{0})| \le n!(2m)^{n}\max _{\zeta \in \partial {\mathbb {B}}_{1/(2m)}(x_{0})}\left| \frac{e^{-(z-\zeta )^{2}}}{z-\zeta }\right| \le n!(2m)^{n-1}\max _{\zeta \in \partial {\mathbb {B}}_{1/(2m)}(x_{0})}|e^{-(z-\zeta )^{2}}| \end{aligned}$$

for every \(z\in S_{m}(\{x_{0}\})\). We deduce that

$$\begin{aligned}&\sup _{z\in S_{m}(\{x_{0}\})}|g_{z}^{\,(n)}(x_{0})| e^{a_{m}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\\&\quad \le n!(2m)^{n-1}\sup _{z\in S_{m}(\{x_{0}\})} \max _{\zeta \in \partial {\mathbb {B}}_{1/(2m)}(x_{0})}| e^{-(z-\zeta )^{2}}|e^{a_{m}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\\&\quad \le n!(2m)^{n-1}\sup _{z\in S_{m}(\{x_{0}\})} \max _{\zeta \in \partial {\mathbb {B}}_{1/(2m)}(x_{0})} |e^{-(z-\zeta )^{2}}|e^{-a_{2m}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }} e^{a_{2m}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }}e^{a_{m}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\\&\quad \le n!(2m)^{n-1}\sup _{\zeta \in \partial {\mathbb {B}}_{1/(2m)} (x_{0})} e^{a_{2m}|{{\,\mathrm{Re}\,}}(\zeta )|^{\beta }} \sup _{z\in S_{m}(\{x_{0}\})}\Vert e^{-(z-\cdot )^{2}} \Vert _{\{x_{0}\},2m}e^{a_{m}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \underset{(10)}{<}\infty , \end{aligned}$$

implying \((z\mapsto \langle \delta _{x_{0}}^{(n)}, \frac{e^{-(z-\cdot )^{2}}}{z-\cdot }\rangle ) \in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus \{x_{0}\})\). This means that the path of the integral on the right-hand side of (12) can be deformed using Cauchy’s integral theorem (like in Proposition 8 (a) and (b)) and we get with \(s:=\min _{j} r_{j}>0\) for \(r=(r_{j})\)

$$\begin{aligned} \frac{1}{2\pi i}\int _{\gamma _{K,k,r}} \left\langle \delta _{x_{0}}^{(n)},\frac{e^{-(z-\cdot )^{2}}}{z-\cdot } \right\rangle \varphi (z)\mathrm{d}z&=\frac{1}{2\pi i} \int _{\partial {\mathbb {B}}_{s}(x_{0})}\left\langle \delta _{x_{0}}^{(n)}, \frac{e^{-(z-\cdot )^{2}}}{z-\cdot }\right\rangle \varphi (z)\mathrm{d}z\\&=\frac{1}{2\pi i}\int _{\partial {\mathbb {B}}_{s}(x_{0})}g_{z}^{\,(n)} (x_{0})\varphi (z)\mathrm{d}z \end{aligned}$$

for all \(\varphi \in {\mathcal {O}}_{a_k}^{-\beta } \left(\overline{U_{k}(K)}\right)\), \(k\in {\mathbb {N}}\). The Laurent series of \(\frac{e^{-(z-\cdot )^{2}}}{z-\cdot }\) in \(\zeta \ne z\) is

$$\begin{aligned} \frac{e^{-(z-\zeta )^{2}}}{z-\zeta }=\frac{1}{z-\zeta } +\sum ^{\infty }_{j=1}\frac{(-1)^{j}}{j!}(z-\zeta )^{2j-1} \end{aligned}$$

and so we have for the nth complex derivative of \(g_{z}\) at \(x_{0}\)

$$\begin{aligned} g_{z}^{\,(n)}(x_{0})=\frac{n!}{(z-x_{0})^{n+1}}+h(z,x_{0}) \end{aligned}$$

with an entire function \(h(\cdot ,x_{0})\). By Cauchy’s integral theorem and Cauchy’s integral formula for derivatives we have

$$\begin{aligned} (H\circ \varTheta )(\delta _{x_{0}}^{(n)})(\varphi )&=\frac{1}{2\pi i}\int _{\partial {\mathbb {B}}_{s} (x_{0})}{g_{z}^{\,(n)}(x_{0})\varphi (z)\mathrm{d}z}\\&=\frac{1}{2\pi i}\int _{\partial {\mathbb {B}}_{s} (x_{0})}\left( \frac{n!}{(z-x_{0})^{n+1}}+h(z,x_{0})\right) \varphi (z)\mathrm{d}z\\&=\frac{n!}{2\pi i}\int _{\partial {\mathbb {B}}_{s} (x_{0})}\frac{\varphi (z)}{(z-x_{0})^{n+1}}\mathrm{d}z =\varphi ^{(n)}(x_{0})=\langle \delta _{x_{0}}^{(n)},\varphi \rangle \end{aligned}$$

for all \(\varphi \in {\mathcal {O}}_{a_k}^{-\beta } \left(\overline{U_{k}(K)}\right)\), \(k\in {\mathbb {N}}\). \(\square\)

Remark 12

If \(K\subset {\mathbb {R}}\), then Theorem 11 is also valid for locally complete E because Proposition 8 still holds due to [5, Proposition 2, p. 354].

If \(K\cap \{\pm \infty \}\) has isolated points in K, e.g. \(K=\{+\infty \}\), then we cannot apply the preceding theorem directly since a counterpart for Proposition 4 (b) is missing. However, we can make use of the relation (5) if \({\mathcal {O}}^{-\beta }_{(a_n)}(\overline{{\mathbb {R}}})\) is dense in \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\).

Corollary 13

If \({\mathcal {O}}^{-\beta }_{(a_n)}(\overline{{\mathbb {R}}})\) dense in \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\), then the map

$$\begin{aligned} H_{K}:{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}} \setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E) \rightarrow L_{b}({\mathcal {O}}^{-\beta }_{(a_n)}(K),E) \end{aligned}$$

is a topological isomorphism with inverse \(\varTheta _{K}\) and

$$\begin{aligned} \varTheta _{K}(T)=\varTheta _{\overline{{\mathbb {R}}}}(T), \quad T\in L({\mathcal {O}}^{-\beta }_{(a_n)}(K), E). \end{aligned}$$
(13)

Proof

\(H_{K}\) and \(\varTheta _{K}\) are well-defined, linear and continuous maps by Proposition 9 and Proposition 10. \(H_{\overline{{\mathbb {R}}}}\) is a topological isomorphism with inverse \(\varTheta _{\overline{{\mathbb {R}}}}\) by Theorem 11. The embedding of \({\mathcal {O}}^{-\beta }_{(a_n)}(\overline{{\mathbb {R}}})\) into \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) is continuous and dense, hence defines the embedding of \(L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\) into \(L({\mathcal {O}}^{-\beta }_{(a_n)}(\overline{{\mathbb {R}}}),E)\) (the density of the first embedding implies the injectivity of the latter one) and we have

$$\begin{aligned} \varTheta _{K}(T)=\varTheta _{\overline{{\mathbb {R}}}}(T),\quad T \in L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E), \end{aligned}$$

by the definition of \(\varTheta _{K}\) and \(\varTheta _{\overline{{\mathbb {R}}}}\). Furthermore, it follows from (5) that

$$\begin{aligned} {H_{\overline{{\mathbb {R}}}}}_{\mid {\mathcal {O}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}},E)}=H_{K} \end{aligned}$$

on \({\mathcal {O}}^{-\beta }_{(a_n)}(\overline{{\mathbb {R}}})\). We conclude for every \(f\in {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) that

$$\begin{aligned} (\varTheta _{K}\circ H_{K})(f)=\varTheta _{\overline{{\mathbb {R}}}}(H_{K}(f)) =\varTheta _{\overline{{\mathbb {R}}}}(H_{\overline{{\mathbb {R}}}}(f))=f \end{aligned}$$

and for every \(T\in L({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\) that

$$\begin{aligned} (H_{K}\circ \varTheta _{K})(T)=H_{\overline{{\mathbb {R}}}}(\varTheta _{K}(T)) =H_{\overline{{\mathbb {R}}}}(\varTheta _{\overline{{\mathbb {R}}}}(T))=T \end{aligned}$$

by Theorem 11. Thus \(H_{K}\) is bijective and \(\varTheta _{K}\) its inverse. \(\square\)

Remark 14

Under the conditions of Theorem 11 resp. Corollary 13 it follows that \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) is Hausdorff since E and thus \(L_{b}({\mathcal {O}}^{-\beta }_{(a_n)}(K),E)\) is Hausdorff. In particular, \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}},E)\) is closed in \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)\) by [25, Lemma 22.9, p. 254].

Corollary 15

If \((a_{n})_{n\in {\mathbb {N}}}\) is strictly increasing, \(a_{n}<0\) for all \(n\in {\mathbb {N}}\) and \(\lim _{n\rightarrow \infty }a_{n}=0\), then the map

$$\begin{aligned} H_{K}:{\mathcal {O}}^{1}_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/ {\mathcal {O}}^{1}_{(a_n)}(\overline{{\mathbb {C}}},E) \rightarrow L_{b}({\mathcal {O}}^{-1}_{(a_n)}(K),E) \end{aligned}$$

is a topological isomorphism with inverse \(\varTheta _{K}\).

Proof

We only need to prove that the condition of Corollary 13 is fulfilled. Due to [17, Theorem 2.2.1, p. 474] (and its correction in [28, Remark, p. 247-248]) the space \({\mathcal {O}}^{-1}_{(a_n)}(\overline{{\mathbb {R}}})\) is dense in \({\mathcal {O}}^{-1}_{(a_n)}(K)\) (where \({\mathcal {O}}^{-1}_{(a_n)}(\overline{{\mathbb {R}}})\) is called \({\mathscr {P}}_{*}\)). \(\square\)

The isomorphy \({\mathcal {O}}^{1}_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E)/{\mathcal {O}}^{1}_{(a_n)}(\overline{{\mathbb {C}}},E) \cong L_{b}({\mathcal {O}}^{-1}_{(a_n)}(K),E)\) in Corollary 15 is already known for special cases like \(E={\mathbb {C}}\) [17, Theorem 3.2.1, p. 480] and Fréchet spaces E [15, 3.9 Satz, p. 41] but the proof is of homological nature. In the special case \(K=[a,\infty ]\), \(a\in {\mathbb {R}}\), and \(E={\mathbb {C}}\) the duality was proved in [26, Theorem 3.3, p. 85-86] and served as an initial point to prove Corollary 15 for complete E in [19, 4.1 Theorem, p. 41].

4 \((\varOmega )\) for \({\mathcal {O}}^{\beta }_{(a_n)}\)-spaces on strips with holes

In this section we derive sufficient conditions on K, \((a_n)_{n\in {\mathbb {N}}}\) and \(\beta\) such that \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\) satisfies \((\varOmega )\). The basic idea is to prove that the strong dual \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\) satisifies \((\varOmega )\). Then we use the duality \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}) \cong {\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\) from the preceding section to obtain \((\varOmega )\) for \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\). Let us recall that a Fréchet space F with an increasing fundamental system of seminorms \(({\left| \!\left| \!\left| {\cdot }\right| \!\right| \!\right| }_{k})_{k\in {\mathbb {N}}}\) satisfies \((\varOmega )\) by [25, Chap. 29, Definition, p. 367] if

$$\begin{aligned} \forall \; p\in {\mathbb {N}}\; \exists \; q\in {\mathbb {N}}\;\forall \; k\in {\mathbb {N}}\; \exists \; n\in {\mathbb {N}},\,C>0\;\forall \; r>0:\; U_{q}\subset Cr^n U_k + \frac{1}{r} U_p \end{aligned}$$

where \(U_{k}:=\{x\in F \; | \; {\left| \!\left| \!\left| {x}\right| \!\right| \!\right| }_{k}\le 1\}\).

We start with a helpful observation concerning the inductive limit \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\), namely, that the choice of the sequence \((1/n)_{n\in {\mathbb {N}}}\) for the neighbourhoods \(U_{n}(K)=U_{1/(1/n)}(K)\) is irrelevant.

Remark 16

Let \((c_{n})_{n\in {\mathbb {N}}}\) be a strictly decreasing sequence in \({\mathbb {R}}\) with \(c_{n}\le 1\) for all \(n\in {\mathbb {N}}\) and \(\lim _{n\to \infty }c_{n}=0\). For \(n\in {\mathbb {N}}\) let

$$\begin{aligned} {\mathcal {O}}_{a_n}^{-\beta }\left(\overline{U_{1/c_{n}}(K)}\right) :=\{f\in {\mathcal {O}}(U_{1/c_{n}}(K))\cap {\mathcal {C}} \left(\overline{U_{1/c_{n}}(K)}\right)\;|\; \Vert f\Vert _{n,1/c_{n}} < \infty \} \end{aligned}$$

where

$$\begin{aligned} \Vert f\Vert _{n,1/c_{n}}:=\sup _{z \in \overline{U_{1/c_{n}}(K)}}|f(z)| e^{-a_{n}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \end{aligned}$$

and the spectral maps for \(n,k\in {\mathbb {N}}\), \(n\le k\), be given by the restrictions

$$\begin{aligned} \widetilde{\pi }_{n,k}:{\mathcal {O}}_{a_n}^{-\beta } \left(\overline{U_{1/c_{n}}(K)}\right) \rightarrow {\mathcal {O}}_{a_k}^{-\beta } \left(\overline{U_{1/c_{k}}(K)}\right), \; \widetilde{\pi }_{n,k}(f) :=f_{\mid U_{1/c_{k}}(K)}. \end{aligned}$$

Then

$${\mathcal{O}}_{{(a_{n} )}}^{{ - \beta }} (K) \cong \lim\limits_{\substack{\longrightarrow\\n\in \mathbb{N}}} {\mathcal{O}}_{{a_{n} }}^{{ - \beta }} \left(\overline{{U_{{1/c_{n} }} (K)}} \right).$$

Proof

It follows directly from Proposition 4 (a) and [9, 4.2 Satz, p. 122]. \(\square\)

We recall an equivalent description of the property \((\varOmega )\). By [25, Lemma 29.13, p. 369] a Fréchet space F with an increasing fundamental system of seminorms \(({\left| \!\left| \!\left| {\cdot }\right| \!\right| \!\right| }_{k})_{k\in {\mathbb {N}}}\) satisfies \((\varOmega )\) if and only if

$$\begin{aligned} \forall \; p\in {\mathbb {N}}\; \exists \; q\in {\mathbb {N}}\;\forall \; k\in {\mathbb {N}}\;\exists \;0<\theta <1,\,C>0\;\forall \; y\in F':\; \Vert y\Vert ^{*}_{q}\le C {\Vert y\Vert ^{*}_{p}}^{1-\theta } {\Vert y\Vert ^{*}_{k}}^{\theta } \end{aligned}$$
(14)

holds where

$$\begin{aligned} \Vert y\Vert ^{*}_{k}:=\sup \{|y(x)|\;|\;{\left| \!\left| \!\left| {x}\right| \!\right| \!\right| }_{k}\le 1\} \in {\mathbb {R}}\cup \{\infty \} \end{aligned}$$

is the dual norm.

Lemma 17

There is a strictly decreasing sequence \((c_{n})_{n\in {\mathbb {N}}}\) in \({\mathbb {R}}\) with \(c_{n}\le 1\) for all \(n\in {\mathbb {N}}\) and \(\lim _{n\to \infty }c_{n}=0\) such that

$$\begin{aligned}&\forall \; p,q,k\in {\mathbb {N}},\,p<q<k\;\exists \;C>0\;\forall \;\zeta \in {\mathbb {R}},\,|\zeta |\ge 1+c_{k}^{-1}:\\&\left( \sup _{z\in {\mathbb {C}},\,|z-\zeta |\le c_{k}}e^{a_{k}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{\theta } \left( \sup _{z\in {\mathbb {C}},\,|z-\zeta | \le c_{p}}e^{a_{p}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{1-\theta } \le C\inf _{z\in {\mathbb {C}},\,|z-\zeta |\le c_{q}}e^{a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \end{aligned}$$

with \(\theta :=\frac{\ln (c_{p}/c_{q})}{\ln (c_{p}/c_{k})}\).

Proof

Let \(c_{n}:=\exp (1/a_{n})\) for all \(n\in {\mathbb {N}}\) if \(a_{n}<0\) for all \(n\in {\mathbb {N}}\) and \(c_{n}:=\exp (-a_{n})\) for all \(n\in {\mathbb {N}}\) if \(a_{n}\ge 0\) for all \(n\in {\mathbb {N}}\). Then \((c_{n})_{n\in {\mathbb {N}}}\) is a strictly decreasing sequence, \(c_{n}\le 1\) for all \(n\in {\mathbb {N}}\) and \(\lim _{n\to \infty }c_{n}=0\). Let \(p,q,k\in {\mathbb {N}}\) such that \(p<q<k\) and \(\theta :=\frac{\ln (c_{p}/c_{q})}{\ln (c_{p}/c_{k})}\). Let \(\zeta \in {\mathbb {R}}\) with \(|\zeta |\ge 1+c_{k}^{-1}\). For \(z\in {\mathbb {C}}\) with \(|z-\zeta |\le c_{n}\), \(n\in \{p,q,k\}\), we deduce from the inequalities

$$\begin{aligned} ||\zeta |-|{{\,\mathrm{Re}\,}}(z)-\zeta ||^{\beta }\le |{{\,\mathrm{Re}\,}}(z)|^{\beta } \le (|{{\,\mathrm{Re}\,}}(z)-\zeta |+|\zeta |)^{\beta }\le (c_{n}+|\zeta |)^{\beta } \end{aligned}$$

and

$$\begin{aligned} |\zeta |-|{{\,\mathrm{Re}\,}}(z)-\zeta |\ge |\zeta |-c_{n}\ge 1+c_{k}^{-1}-c_{n} \ge c_{k}^{-1}>0 \end{aligned}$$

that

$$\begin{aligned} \inf _{z\in {\mathbb {C}},\,|z-\zeta |\le c_{q}}e^{a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \ge e^{a_{q}(c_{q}+|\zeta |)^{\beta }} \end{aligned}$$

and

$$\begin{aligned} \sup _{z\in {\mathbb {C}},\,|z-\zeta |\le c_{k}}e^{\theta a_{k}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \sup _{z\in {\mathbb {C}},\,|z-\zeta |\le c_{p}} e^{(1-\theta ) a_{p}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \le e^{\theta a_{k}(|\zeta |-c_{k})^{\beta } +(1-\theta ) a_{p}(|\zeta |-c_{p})^{\beta }}, \end{aligned}$$

if \(a_{n}<0\), as well as

$$\begin{aligned} \inf _{z\in {\mathbb {C}},\,|z-\zeta |\le c_{q}}e^{a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \ge e^{a_{q}(|\zeta |-c_{q})^{\beta }} \end{aligned}$$

and

$$\begin{aligned} \sup _{z\in {\mathbb {C}},\,|z-\zeta |\le c_{k}}e^{\theta a_{k}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}\sup _{z\in {\mathbb {C}},\,|z-\zeta |\le c_{p}} e^{(1-\theta ) a_{p}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \le e^{\theta a_{k}(c_{k}+|\zeta |)^{\beta }+(1-\theta ) a_{p}(c_{p}+|\zeta |)^{\beta }}, \end{aligned}$$

if \(a_{n}\ge 0\). Now, we only need to prove that there is \(C>0\) such that

$$\begin{aligned} e^{\theta a_{k}(|\zeta |-c_{k})^{\beta }+(1-\theta ) a_{p} (|\zeta |-c_{p})^{\beta }} \le C e^{a_{q}(c_{q}+|\zeta |)^{\beta }},\quad a_{n}<0, \end{aligned}$$

resp.

$$\begin{aligned} e^{\theta a_{k}(c_{k}+|\zeta |)^{\beta }+(1-\theta ) a_{p}(c_{p}+|\zeta |)^{\beta }} \le C e^{a_{q}(|\zeta |-c_{q})^{\beta }},\quad a_{n}\ge 0. \end{aligned}$$

If \(a_{n}<0\), we observe that

$$\begin{aligned}&\theta a_{k}(|\zeta |-c_{k})^{\beta }+(1-\theta ) a_{p}(|\zeta |-c_{p})^{\beta } -a_{q}(c_{q}+|\zeta |)^{\beta }\\&\quad \le \theta a_{k}(|\zeta |-c_{p})^{\beta }+(1-\theta ) a_{p}(|\zeta |-c_{p})^{\beta } -a_{q}(|\zeta |-c_{p})^{\beta }-a_{q}(c_{p}+c_{q})^{\beta }\\&\quad = (\theta a_{k}+(1-\theta ) a_{p}-a_{q})(|\zeta |-c_{p})^{\beta } -a_{q}(c_{p}+c_{q})^{\beta } \end{aligned}$$

and, if \(a_{n}\ge 0\), that

$$\begin{aligned}&\theta a_{k}(c_{k}+|\zeta |)^{\beta }+(1-\theta ) a_{p}(c_{p}+|\zeta |)^{\beta } -a_{q}(|\zeta |-c_{q})^{\beta }\\&\quad \le \theta a_{k}(c_{p}+|\zeta |)^{\beta }+(1-\theta ) a_{p}(c_{p}+|\zeta |)^{\beta } -a_{q}|||\zeta |+c_{p}|^{\beta }-|c_{p}+c_{q}|^{\beta }|\\&\quad \le (\theta a_{k}+(1-\theta ) a_{p}-a_{q}) (c_{p}+|\zeta |)^{\beta }+a_{q}(c_{p}+c_{q})^{\beta }. \end{aligned}$$

What remains to be shown is that

$$\begin{aligned} 0\ge \theta a_{k}+(1-\theta ) a_{p}-a_{q} \end{aligned}$$
(15)

because then we are done with \(C:=\exp (|a_{q}|(c_{p}+c_{q})^{\beta })\). If \(a_{n}<0\), then

$$\begin{aligned} \theta =\frac{\ln (c_{p}/c_{q})}{\ln (c_{p}/c_{k})} =\frac{(1/a_{p})-(1/a_{q})}{(1/a_{p})-(1/a_{k})} =\frac{a_{k}(a_{q}-a_{p})}{a_{q}(a_{k}-a_{p})} \end{aligned}$$

and (15) is equivalent to

$$\begin{aligned} 0\ge \frac{a_{k}^{2}(a_{q}-a_{p})}{a_{q}(a_{k}-a_{p})} +\left( 1-\frac{a_{k}(a_{q}-a_{p})}{a_{q}(a_{k}-a_{p})}\right) a_{p}-a_{q}, \end{aligned}$$

which holds if and only if

$$\begin{aligned} 0&\le a_{k}^{2}(a_{q}-a_{p})+\left( a_{q}(a_{k}-a_{p})-a_{k}(a_{q}-a_{p}) \right) a_{p}-a_{q}^{2}(a_{k}-a_{p})\\&=a_{k}^{2}(a_{q}-a_{p})+(a_{k}-a_{q})a_{p}^{2}-a_{q}^{2}(a_{k}-a_{q} +a_{q}-a_{p})\\&=(a_{k}^{2}-a_{q}^{2})(a_{q}-a_{p})+(a_{k}-a_{q})(a_{p}^{2}-a_{q}^{2})\\&=(a_{k}-a_{q})(a_{k}+a_{q})(a_{q}-a_{p})-(a_{k}-a_{q}) (a_{q}-a_{p})(a_{p}+a_{q}) \end{aligned}$$

as \(a_{q}(a_{k}-a_{p})<0\). Since \(a_{k}-a_{q}>0\) and \(a_{q}-a_{p}>0\), this is equivalent to

$$\begin{aligned} 0\le (a_{k}+a_{q})-(a_{p}+a_{q})=a_{k}-a_{p}, \end{aligned}$$

which is true. If \(a_{n}\ge 0\), then

$$\begin{aligned} \theta =\frac{\ln (c_{p}/c_{q})}{\ln (c_{p}/c_{k})} =\frac{a_{q}-a_{p}}{a_{k}-a_{p}} \end{aligned}$$

and (15) is equivalent to

$$\begin{aligned} 0\ge \frac{a_{q}-a_{p}}{a_{k}-a_{p}}a_{k} +\left( 1-\frac{a_{q}-a_{p}}{a_{k}-a_{p}}\right) a_{p}-a_{q}, \end{aligned}$$

which holds, as \(a_{k}-a_{p}>0\), if and only if

$$\begin{aligned} 0&\ge (a_{q}-a_{p})a_{k}+\left( a_{k}-a_{p}-(a_{q}-a_{p})\right) a_{p} -(a_{k}-a_{p})a_{q}\\&= a_{q}a_{k}-a_{p}a_{k}+a_{k}a_{p}-a_{q}a_{p}-a_{k}a_{q}+a_{p}a_{q} =0. \end{aligned}$$

\(\square\)

We note that \(\theta\) in the lemma above fulfils \(0<\theta <1\) and state the following improvement of [19, 5.21 Lemma, p. 88].

Lemma 18

The following assertions hold.

  1. (a)
    $$\begin{aligned}&\forall \; p,q,k\in {\mathbb {N}},\,p<q<k\;\exists \; 0<\theta <1,\,C>0\; \forall \;f\in {\mathcal {O}}_{a_p}^{-\beta }\left(\overline{U_{1/c_{p}}(K)}\right):\\&\qquad \Vert f\Vert _{q,c_{q}}\le C\Vert f\Vert ^{1-\theta }_{p,c_{p}} \Vert f\Vert ^{\theta }_{k,c_{k}} \end{aligned}$$

    with \(c_{n}\) from Lemma 17 if \(K\cap \{\pm \infty \}\ne \varnothing\) resp. \(c_{n}:=1/n\), \(n\in {\mathbb {N}}\), if \(K\subset {\mathbb {R}}\).

  2. (b)

    \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\) satisfies \((\varOmega )\).

Proof

(a) Let \(p,q,k\in {\mathbb {N}}\), \(p<q<k\), and \(f\in {\mathcal {O}}_{a_p}^{-\beta }\left(\overline{U_{1/c_{p}}(K)}\right)\). Considering the components of \(U_{1/c_{p}}(K)\) we have to distinguish three different cases.

(i) Let \(Z_{p}\) be a bounded component of \(U_{1/c_{p}}(K)\). By Remark 6 (a) there are only finitely many components \(Z_{q}\) of \(U_{1/c_{q}}(K)\) with \(Z_{q}\subset Z_{p}\). For every such component \(Z_{q}\) we choose \(\zeta \in Z_{q}\cap K\), which exists since \(Z_{q}\) is bounded. Let \(Z_{k}\) be the (unique) component of \(U_{1/c_{k}}(K)\) which contains \(\zeta\). \(Z_{p}\) is a proper simply connected subset of \({\mathbb {C}}\). Thus there exists a biholomorphic map \(\widetilde{\psi }:Z_{p}\rightarrow {\mathbb {B}}_{1}(0)\) with \(\widetilde{\psi }(\zeta )=0\) due to the Riemann mapping theorem (and Möbius transformation). In addition, \(Z_{p}\) and \({\mathbb {B}}_{1}(0)\) are Jordan domains (for the definition see [1, 2.8.5 Lemma, p. 193, 1.8.5 Jordan Curve Theorem, p. 68]) and so there exists a homeomorphism \(\psi :\overline{Z_{p}}\rightarrow \overline{{\mathbb {B}}_{1}(0)}\) such that \(\psi _{\mid Z_{p}}=\widetilde{\psi }\) by [1, 2.8.8 Theorem (Caratheodory), p. 195]. Since \(\psi (\overline{Z_{q}})\subset \psi (Z_{p})={\mathbb {B}}_{1}(0)\) and \(\psi (\overline{Z_{q}})\) is compact, as \(\overline{Z_{q}}\) is compact and \(\psi\) continuous, there is \(0<r_{q}<1\) such that \(\psi (\overline{Z_{q}})\subset \overline{{\mathbb {B}}_{r_{q}}(0)}\). Moreover, there exists \(0<r_{k}<r_{q}\) such that \(\overline{{\mathbb {B}}_{r_{k}}(0)}\subset \psi (Z_{k})\) since \(0\in \psi (Z_{k})\), \(\psi (Z_{k})\) is open by the open mapping theorem (from complex analysis) and \(\psi (Z_{k})\subset \psi (Z_{q})\). The function \(u:=f\circ (\psi ^{-1})\) is holomorphic on \({\mathbb {B}}_{1}(0)\) and continuous on \(\overline{{\mathbb {B}}_{1}(0)}\), in particular, |u| is subharmonic on \({\mathbb {B}}_{1}(0)\) and continuous on \(\overline{{\mathbb {B}}_{1}(0)}\). Setting

$$\begin{aligned} M(r):=\sup _{|z|=r}|u(z)|,\quad 0<r\le 1, \end{aligned}$$

we obtain by virtue of [1, 4.4.32 Proposition (Hadamard’s Three Circles Theorem), p. 338]

$$\begin{aligned} \ln (M(r_{q}))\le \frac{\ln (1/r_{q})}{\ln (1/r_{k})} \ln (M(r_{k}))+ \frac{\ln (r_{q}/r_{k})}{\ln (1/r_{k})}\ln (M(1)) \end{aligned}$$

and hence

$$\begin{aligned} M(r_{q})\le M(r_{k})^{\theta }M(1)^{1-\theta } \end{aligned}$$

with \(\theta :=\frac{\ln (1/r_{q})}{\ln (1/r_{k})}\). We note that \(0<\theta <1\) because \(0<r_{k}<r_{q}<1\). By the maximum principle we have

$$\begin{aligned} M(r_{q})&=\sup _{|z|\le r_{q}}|u(z)| \ge \inf _{|z|\le r_{q}}e^{a_{q}|{{\,\mathrm{Re}\,}}(\psi ^{-1}(z))|^{\beta }} \sup _{|z|\le r_{q}}|f(\psi ^{-1}(z))| e^{-a_{q}|{{\,\mathrm{Re}\,}}(\psi ^{-1}(z))|^{\beta }}\\&\hspace{-0.75cm}\underset{{\psi (\overline{Z_{q}})\subset \overline{{\mathbb {B}}_{r_{q}} (0)}}}{\ge } \;\underbrace{\inf _{|z|\le r_{q}}e^{a_{q}| {{\,\mathrm{Re}\,}}(\psi ^{-1}(z))|^{\beta }}}_{=:C_{0}>0} \sup _{z\in \overline{Z_{q}}}|f(z)|e^{-a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \end{aligned}$$

as well as

$$\begin{aligned}&M(r_{k})^{\theta }M(1)^{1-\theta }\\&\quad =\sup _{|z|\le r_{k}}|u(z)|^{\theta }\sup _{|z|\le 1}| u(z)|^{1-\theta }\\&\quad \le \left( \sup _{|z|\le r_{k}}e^{a_{k}|{{\,\mathrm{Re}\,}}(\psi ^{-1} (z))|^{\beta }}\right) ^{\theta } \left( \sup _{|z|\le r_{k}}|f (\psi ^{-1}(z))|e^{-a_{k}|{{\,\mathrm{Re}\,}}(\psi ^{-1}(z))|^{\beta }}\right) ^{\theta }\\&\qquad \cdot \left( \sup _{|z|\le 1}e^{a_{p}|{{\,\mathrm{Re}\,}}(\psi ^{-1}(z))|^{\beta }} \right) ^{1-\theta } \left( \sup _{|z|\le 1}|f(\psi ^{-1}(z))|e^{-a_{p}| {{\,\mathrm{Re}\,}}(\psi ^{-1}(z))|^{\beta }}\right) ^{1-\theta }\\&\hspace{-0.75cm} \underset{{\overline{{\mathbb {B}}_{r_{k}}(0)}\subset \psi (\overline{Z_{k}})}}{\le }\;\underbrace{\left( \sup _{|z| \le r_{k}}e^{a_{k}|{{\,\mathrm{Re}\,}}(\psi ^{-1}(z))|^{\beta }}\right) ^{\theta } \left( \sup _{|z|\le 1}e^{a_{p}|{{\,\mathrm{Re}\,}}(\psi ^{-1}(z))|^{\beta }} \right) ^{1-\theta }}_{=:C_{1}}\\&\qquad \cdot \left( \sup _{z\in \overline{Z_{k}}}|f(z)| e^{-a_{k}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{\theta } \left( \sup _{z\in \overline{Z_{p}}}|f(z)|e^{-a_{p}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{1-\theta } \end{aligned}$$

and therefore

$$\begin{aligned} \sup _{z\in \overline{Z_{q}}}|f(z)|e^{-a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}&\le \frac{C_{1}}{C_{0}}\left( \sup _{z\in \overline{Z_{k}}}| f(z)|e^{-a_{k}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{\theta } \left( \sup _{z\in \overline{Z_{p}}}|f(z)|e^{-a_{p}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{1-\theta }\nonumber \\&\le \frac{C_{1}}{C_{0}}\Vert f\Vert ^{\theta }_{k,c_{k}} \Vert f\Vert ^{1-\theta }_{p,c_{p}}. \end{aligned}$$
(16)

(ii) Let \(K\cap \{\pm \infty \}\ne \varnothing\). Let \(Z_{p}\) be an unbounded component of \(U_{1/c_{p}}(K)\), w.l.o.g. the real part of \(Z_{p}\) is bounded from below and unbounded from above. Let \(\zeta \in {\mathbb {R}}\) such that \(\zeta \ge 1+c_{k}^{-1}\). Then we have \(\overline{{\mathbb {B}}_{c_{j}}(\zeta )}\subset ([c_{j}^{-1}, \infty )+i[-c_{j},c_{j}])\) for \(j\in \{p,q,k\}\) since \(c_{p}^{-1}<c_{q}^{-1}<c_{k}^{-1}\) and \(c_{j}\le 1\). Applying Hadamard’s Three Circles Theorem to \(u:=|f|\), we get \(M(c_{q})\le M(c_{k})^{\theta }M(c_{p})^{1-\theta }\) with \(\theta :=\frac{\ln (c_{p}/c_{q})}{\ln (c_{p}/c_{k})}\) fulfilling \(0<\theta <1\). Like in (i) we obtain

$$\begin{aligned} M(c_{q}) \ge \inf _{|z-\zeta |\le c_{q}}e^{a_{q}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}\sup _{|z-\zeta |\le c_{q}}|f(z)|e^{-a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \end{aligned}$$

and

$$\begin{aligned} M(c_{k})^{\theta }M(c_{p})^{1-\theta }&\le \left( \sup _{|z-\zeta |\le c_{k}} e^{a_{k}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{\theta } \left( \sup _{|z-\zeta | \le c_{p}}e^{a_{p}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{1-\theta }\\&\quad \left( \sup _{|z-\zeta |\le c_{k}}|f(z)|e^{-a_{k}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{\theta } \left( \sup _{|z-\zeta | \le c_{p}}|f(z)|e^{-a_{p}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{1-\theta }. \end{aligned}$$

Due to Lemma 17 there is \(C_{2}>0\), independent of \(\zeta\), such that

$$\begin{aligned} \sup _{|z-\zeta |\le c_{q}}|f(z)|e^{-a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \le C_{2} \left( \sup _{|z-\zeta |\le c_{k}}|f(z)|e^{-a_{k}| {{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{\theta } \left( \sup _{|z-\zeta | \le c_{p}}|f(z)|e^{-a_{p}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{1-\theta } \end{aligned}$$

and thus

$$\begin{aligned}&\sup\limits_{\substack{z\in\mathbb{C} \\ \mathrm{d}(\{z\},[1+c_{k}^{-1},\infty))\leq c_{q}}}|f(z)| e^{-a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} =\sup\limits_{\substack{\zeta\in\mathbb{R} \\ \zeta\geq 1+c_{k}^{-1}}}\sup _{|z-\zeta |\le c_{q}}|f(z)| e^{-a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\nonumber \\&\quad \le C_{2}\left( \sup\limits_{\substack{z\in\mathbb{C} \\ \mathrm{d}(\{z\},[1+c_{k}^{-1},\infty))\leq c_{k}}}|f(z)| e^{-a_{k}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{\theta } \left( \sup\limits_{\substack{z\in\mathbb{C} \\ \mathrm{d}(\{z\},[1+c_{k}^{-1},\infty))\leq c_{p}}}|f(z)| e^{-a_{p}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\right) ^{1-\theta }\nonumber \\&\quad \le C_{2}\Vert f\Vert ^{\theta }_{k,c_{k}}\Vert f\Vert ^{1-\theta }_{p,c_{p}}. \end{aligned}$$
(17)

(iii) Let \(K\cap \{\pm \infty \}\ne \varnothing\) and \(Z_{p}\) be w.l.o.g. like in (ii). We define \(\widetilde{Z}_{p}:=Z_{p}\cap ((-\infty ,1+c_{k}^{-1})+i{\mathbb {R}})\). By Remark 6 (a) there are only finitely many components \(\widetilde{Z}_{q}\) of \(U_{1/c_{q}}(K)\cap ((-\infty ,1+c_{k}^{-1})+i{\mathbb {R}})\) with \(\widetilde{Z}_{q}\subset \widetilde{Z}_{p}\). For every such component \(\widetilde{Z}_{q}\) we choose \(\zeta \in \widetilde{Z}_{q}\cap (K\cup \{x\in {\mathbb {R}}\;|\;x>c_{k}^{-1}\})\). Let \(\widetilde{Z}_{k}\) be the (unique) component of \(U_{1/c_{k}}(K)\cap ((-\infty ,1+c_{k}^{-1})+i{\mathbb {R}})\) which contains \(\zeta\). The rest is analogous to (i) and thus there are \(\widetilde{C}_{0}\), \(\widetilde{C}_{1}>0\) and \(0<\theta <1\) such that

$$\begin{aligned} \sup _{z\in \overline{\widetilde{Z}_{q}}}|f(z)|e^{-a_{q}|{{\,\mathrm{Re}\,}}(z)|^{\beta }} \le \frac{\widetilde{C}_{1}}{\widetilde{C}_{0}} \Vert f\Vert ^{\theta }_{k,c_{k}}\Vert f\Vert ^{1-\theta }_{p,c_{p}}. \end{aligned}$$
(18)

(iv) First, let us remark the following. Let B be a set, \(B_{0}\subset B\), \(0<\theta _{0}<\theta _{1}<1\), \(h:B_{0} \rightarrow [0,\infty )\), \(g:B\rightarrow [0,\infty )\) and \(h\le g\) on \(B_{0}\). Then

$$\begin{aligned} \left( \sup _{z\in B_{0}} h(z)\right) ^{\theta _{1}}\left( \sup _{z\in B} g(z) \right) ^{1-\theta _{1}} \le \left( \sup _{z\in B_{0}} h(z) \right) ^{\theta _{0}}\left( \sup _{z\in B} g(z)\right) ^{1-\theta _{0}}. \end{aligned}$$

Now, we take the minimum of all the \(\theta\)s which appear in (i)-(iii). There are finitely many of them and denote their minimum again with \(\theta\). Take the maximum of the constants \(\frac{C_{1}}{C_{0}}\), \(C_{2}\) and \(\frac{\widetilde{C}_{1}}{\widetilde{C}_{0}}\) which appear in (i)-(iii). There are again finitely many of them and denote their maximum with C. We apply the remark above to \(B_{0}:=\overline{U_{1/c_{k}}(K)}\), \(B:=\overline{U_{1/c_{p}}(K)}\), \(h(z):=|f(z)|e^{-a_{k}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\) and \(g(z):=|f(z)|e^{-a_{p}|{{\,\mathrm{Re}\,}}(z)|^{\beta }}\). Then we deduce from (16), (17) and (18) that

$$\begin{aligned} \Vert f\Vert _{q,c_{q}}\le C\Vert f\Vert ^{\theta }_{k,c_{k}}\Vert f\Vert ^{1-\theta }_{p,c_{p}}. \end{aligned}$$

(b) We recall Remark 16 and identify both inductive limits. Let \(p\in {\mathbb {N}}\) and choose \(q\in {\mathbb {N}}\), \(q>p\). Let \(k\in {\mathbb {N}}\). If \(k\le p\), then we get for any \(0<\theta <1\) and all \(y\in ({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}')'\) by definition of the dual norm

$$\begin{aligned} \Vert y\Vert ^{*}_{q,c_{q}}\underset{p<q}{\le }\Vert y\Vert ^{*}_{p,c_{p}} ={\Vert y\Vert ^{*}_{p,c_{p}}}^{1-\theta }{\Vert y\Vert ^{*}_{p,c_{p}}}^{\theta } \underset{k<p}{\le }{\Vert y\Vert ^{*}_{p,c_{p}}}^{1-\theta } {\Vert y\Vert ^{*}_{k,c_{k}}}^{\theta }. \end{aligned}$$

Let \(k>p\). If \(k\le q\), we have for any \(0<\theta <1\) and all \(y\in ({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}')'\) by definition of the dual norm

$$\begin{aligned} \Vert y\Vert ^{*}_{q,c_{q}}\underset{k\le q}{\le }\Vert y\Vert ^{*}_{k,c_{k}} ={\Vert y\Vert ^{*}_{k,c_{k}}}^{1-\theta }{\Vert y\Vert ^{*}_{k,c_{k}}}^{\theta } \underset{p<k}{\le }{\Vert y\Vert ^{*}_{p,c_{p}}}^{1-\theta } {\Vert y\Vert ^{*}_{k,c_{k}}}^{\theta }. \end{aligned}$$

Let \(k>q\) and \(y\in ({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}')'\). If \(\Vert y\Vert ^{*}_{p,c_{p}}=\infty\), then (14) is obviously fulfilled. Let \(\Vert y\Vert ^{*}_{p,c_{p}}<\infty\). As \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) is a DFS-space by Proposition 4 (a), the sets

$$\begin{aligned} B_{n}:=\{f\in {\mathcal {O}}_{a_n}^{-\beta }(\overline{U_{1/c_{n}}(K)}) \;|\;\Vert f\Vert _{n,c_{n}}\le 1\},\quad n\in {\mathbb {N}}, \end{aligned}$$

are a fundamental system of bounded sets of \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) by [25, Proposition 25.19, p. 303] and hence the seminorms

$$\begin{aligned} {\left| \!\left| \!\left| {x}\right| \!\right| \!\right| }_{n}:=\sup _{f\in B_{n}}|x(f)|,\quad x \in {\mathcal {O}}^{-\beta }_{(a_n)}(K)', \end{aligned}$$

form a fundamental system of seminorms of \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\). Furthermore, \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) is reflexive and thus there is a unique \(f\in {\mathcal {O}}^{-\beta }_{(a_n)}(K)\) such that \(y(x)=x(f)\) for all \(x\in {\mathcal {O}}^{-\beta }_{(a_n)}(K)'\). Then we obtain by [25, Proposition 22.14, p. 256] for all \(n\in {\mathbb {N}}\), \(n\ge p\),

$$\begin{aligned} \infty&>\Vert y\Vert ^{*}_{p,c_{p}}\underset{p\le n}{\ge } \Vert y\Vert ^{*}_{n,c_{n}} =\sup \{|y(x)|\;|\;{\left| \!\left| \!\left| {x}\right| \!\right| \!\right| }_{n}\le 1\} =\sup \{|x(f)|\;|\;x\in B^{\circ }_{n}\}\\&=\inf \{t>0\;|\;f\in tB_{n}\}. \end{aligned}$$

In particular, this means that \(\{t>0\;|\;f\in tB_{n}\}\ne \varnothing\) and thus we have \(f\in {\mathcal {O}}_{a_n}^{-\beta }\left(\overline{U_{1/c_{n}}(K)}\right)\) as well as

$$\begin{aligned} \Vert y\Vert ^{*}_{n,c_{n}}=\inf \{t>0\;|\;f\in tB_{n}\}=\Vert f\Vert _{n,c_{n}} \end{aligned}$$

for all \(n\ge p\). So by part (a), there are \(C>0\) and \(0<\theta <1\), only depending on p, q and k, such that

$$\begin{aligned} \Vert y\Vert ^{*}_{q,c_{q}}=\Vert f\Vert _{q,c_{q}} \le C\Vert f\Vert ^{1-\theta }_{p,c_{p}}\Vert f\Vert ^{\theta }_{k,c_{k}} =C{\Vert y\Vert ^{*}_{p,c_{p}}}^{1-\theta }{\Vert y\Vert ^{*}_{k,c_{k}}}^{\theta }. \end{aligned}$$

\(\square\)

The idea to use Hadamard’s Three Circles Theorem in the proof of Lemma 18 (a) is taken from the proof of [30, Lemma 5.2 (a)(3), p. 263-264]. If \(K\subset {\mathbb {R}}\) is non-empty and compact, Lemma 18 (b) is already known. Indeed, the space \({\mathcal {O}}({\mathbb {C}}\setminus K)\) satisfies \((\varOmega )\) by [31, Proposition 2.5 (b), p. 173] and thus the quotient space \({\mathcal {O}}({\mathbb {C}}\setminus K)/{\mathcal {O}}({\mathbb {C}})\) as well by [25, Lemma 29.11 (2), p. 368]. Since \((\varOmega )\) is a linear-topological invariant by [25, Lemma 29.11 (1), p. 368], it follows from \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\cong {\mathscr {A}}(K)_{b}' \cong {\mathcal {O}}({\mathbb {C}}\setminus K)/{\mathcal {O}}({\mathbb {C}})\) by (2) that \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\) also satisfies \((\varOmega )\). Combining our duality result with the preceding lemma, we get a generalisation of [19, 5.22 Theorem, p. 92].

Corollary 19

If

  1. (i)

    \(K\subset {\mathbb {R}}\), or \(K\cap \{\pm \infty \}\) has no isolated points in K, or

  2. (ii)

    K is arbitrary, \(a_{n}< 0\) for all \(n\in {\mathbb {N}}\), \(\lim _{n\to \infty }a_{n}=0\) and \(\beta =1\),

then \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\) satisfies \((\varOmega )\).

Proof

The spaces \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\) and \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}})\) are Fréchet spaces which is easily checked (similar to [20, 3.7 Proposition, p. 240]). By Theorem 11 in (i) resp. Corollary 15 in (ii) \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}})\) is topologically isomorphic to \({\mathcal {O}}^{-\beta }_{(a_n)}(K)_{b}'\), in particular, the quotient is a Fréchet space as \({\mathcal {O}}^{-\beta }_{(a_n)}(K)\) is a DFS-space by Proposition 4 (a). Since \((\varOmega )\) is a linear-topological invariant by [25, Lemma 29.11 (1), p. 368], \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}})\) satisfies \((\varOmega )\) due to Lemma 18 (b). The sequence

$$\begin{aligned} 0\rightarrow {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}) \overset{i}{\rightarrow }{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K) \overset{q}{\rightarrow }{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)/ {\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}})\rightarrow 0 \end{aligned}$$

is an exact sequence of Fréchet spaces where i means the inclusion and q the quotient map. \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}})\) satisfies \((\varOmega )\) by [22, Corollary 14, p. 18] combined with Assumption 3 (iii)+(iv) and \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)/{\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}})\) as well, thus \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\) by [33, 1.7 Lemma, p. 230], too. \(\square\)

5 Surjectivity of the Cauchy-Riemann operator

In our last section we prove our main result on the surjectivity of the Cauchy-Riemann operator on \({\mathcal {E}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}}\setminus K,E)\). This is done by using the results obtained so far and splitting theory. We recall that a Fréchet space \((F,({\left| \!\left| \!\left| {\cdot }\right| \!\right| \!\right| }_{k})_{k\in {\mathbb {N}}})\) satisfies (DN) by [25, Chap. 29, Definition, p. 359] if

$$\begin{aligned} \exists \;p\in {\mathbb {N}}\;\forall \;k\in {\mathbb {N}}\;\exists \;n\in {\mathbb {N}},\,C>0 \;\forall \;x\in F:\; {\left| \!\left| \!\left| {x}\right| \!\right| \!\right| }^{2}_{k}\le C {\left| \!\left| \!\left| {x}\right| \!\right| \!\right| }_{p}{\left| \!\left| \!\left| {x}\right| \!\right| \!\right| }_{n}. \end{aligned}$$

A PLS-space is a projective limit \(X = \lim\limits_{\substack{\longleftarrow\\N\in\mathbb{N}}} X_{N}\), where the \(X_{N} = \lim\limits_{\substack{\longrightarrow\\N\in\mathbb{N}}}\left( {X_{{N,n}} ,\left| {\left| {\left| \cdot \right|} \right|} \right|_{{N,n}} } \right)\) are DFS-spaces, and it satisfies (PA) if

$$\begin{aligned}&\forall \; N\;\exists \; M\;\forall \; K\;\exists \; n\;\forall \; m\;\forall \; \eta>0\;\exists \; k,C,r_0>0\; \forall \; r>r_0\;\forall \; x'\in X'_{N}:\\&{\left| \!\left| \!\left| {x'\circ i^{M}_{N}}\right| \!\right| \!\right| }^{*}_{M,m} \le C\left( r^{\eta }{\left| \!\left| \!\left| {x'\circ i^{K}_{N}}\right| \!\right| \!\right| }^{*}_{K,k} +\frac{1}{r}{\left| \!\left| \!\left| {x'}\right| \!\right| \!\right| }^{*}_{N,n}\right) \end{aligned}$$

where \({\left| \!\left| \!\left| {\cdot }\right| \!\right| \!\right| }^{*}\) denotes the dual norm of \({\left| \!\left| \!\left| {\cdot }\right| \!\right| \!\right| }\) and \(i^{M}_{N}\), \(i^{K}_{N}\) the linking maps (see [4, Sect. 4, Eq. (24), p. 577]).

Theorem 20

Let \((a_{n})_{n\in {\mathbb {N}}}\) be strictly increasing, \(a_{n}<0\) for all \(n\in {\mathbb {N}}\) and \(\lim _{n\to \infty }a_{n}=0\). If

  1. (i)

    \(K\subset {\mathbb {R}}\), or \(K\cap \{\pm \infty \}\) has no isolated points in K, or

  2. (ii)

    K is arbitrary and \(\beta =1\),

and

  1. (a)

    \(E:=F_{b}'\) where F is a Fréchet space over \({\mathbb {C}}\) satisfying (DN), or

  2. (b)

    E is an ultrabornological PLS-space over \({\mathbb {C}}\) satisfying (PA),

then

$$\begin{aligned} \overline{\partial }^{E}:{\mathcal {E}}^{\beta }_{(a_n)} (\overline{{\mathbb {C}}}\setminus K,E) \rightarrow {\mathcal {E}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K,E) \end{aligned}$$

is surjective.

Proof

We only need to check that the conditions of Theorem 1 are fulfilled. \({\mathcal {E}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\) is nuclear, in particular a Schwartz space, and thus its subspace \({\mathcal {E}}^{\beta }_{(a_n),\overline{\partial }}(\overline{{\mathbb {C}}}\setminus K)\) as well by [21, Theorem 3.1, p. 188], [21, 2.8 Example (ii), p. 179], [21, Remark 2.7, p. 178-179] and [21, Remark 2.3 (b), p. 177]. Furthermore, \({\mathcal {E}}^{\beta }_{(a_n),\overline{\partial }}(\overline{{\mathbb {C}}}\setminus K) ={\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\) by Remark 2. Due to Corollary 19 the space \({\mathcal {O}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\) satisfies \((\varOmega )\). The Cauchy-Riemann operator \(\overline{\partial } :{\mathcal {E}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K) \rightarrow {\mathcal {E}}^{\beta }_{(a_n)}(\overline{{\mathbb {C}}}\setminus K)\) in the \({\mathbb {C}}\)-valued case is surjective by [23, Corollary 5.6, p. 27] which follows from [23, Example 5.7 (a), p. 27-28] in the case that \(K\subset {\mathbb {R}}\) or \(K\cap \{\pm \infty \}\) has no isolated points in K. If \(K\cap \{\pm \infty \}\) has isolated points in K, then the proof that the conditions of [23, Corollary 5.6, p. 27] are fulfilled is verbatim as in [23, Example 5.7 (a), p. 27-28]. Hence all conditions of Theorem 1 are fulfilled. \(\square\)

Theorem 20, together with [22, Corollary 18, p. 21] (\(K=\varnothing\)), generalises [19, 5.24 Theorem, p. 95] which is case (ii) above.