Skip to main content

Detecting Performance Anomalies in the Multi-component Software a Collaborative Robot

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2020 (IDEAL 2020)

Abstract

The detection of anomalies (affecting hardware or software) is an open challenge for cyber-physical systems in general and robots in particular. Physical anomalies related to the hardware components of such systems have been widely researched. However, scant attention has been devoted so far to study the anomalies affecting the software components. In order to bridge this gap, the present paper proposes the application of different classifiers to a robot performance dataset for the first time. The applied supervised models are targeted at detecting synthetically-induced software anomalies, having a detrimental impact on the performance of a collaborative robot. Obtained results demonstrate that the applied Machine Learning models can successfully address the target problem, with acceptable detection rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alsamhi, S.H., Ma, O., Ansari, M.S.: Survey on artificial intelligence based techniques for emerging robotic communication. Telecommun. Syst. 72(3), 483–503 (2019). https://doi.org/10.1007/s11235-019-00561-z

    Article  Google Scholar 

  2. Basurto, N., Cambra, C., Álvaro Herrero: improving the detection of robot anomalies by handling data irregularities. Neurocomputing (2020, in press)

    Google Scholar 

  3. Costa, M.A., Wullt, B., Norrlöf, M., Gunnarsson, S.: Failure detection in robotic arms using statistical modeling, machine learning and hybrid gradient boosting. Measurement 146, 425–436 (2019). https://doi.org/10.1016/j.measurement.2019.06.039

    Article  Google Scholar 

  4. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing. Revista Iberoamericana de Automática e Informática industrial (2019)

    Google Scholar 

  5. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A new method for anomaly detection based on non-convex boundaries with random two-dimensional projections. Inf. Fus. 65, 50–57 (2020)

    Article  Google Scholar 

  6. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Simić, D., Méndez-Pérez, J.A., Luis Calvo-Rolle, J.: Anomaly detection based on one-class intelligent techniques over a control level plant. Logic J. IGPL 28(4), 502–518 (2020)

    Google Scholar 

  7. Lu, H., Li, Y., Mu, S., Wang, D., Kim, H., Serikawa, S.: Motor anomaly detection for unmanned aerial vehicles using reinforcement learning. IEEE Internet of Things J. 5(4), 2315–2322 (2018). https://doi.org/10.1109/JIOT.2017.2737479

    Article  Google Scholar 

  8. Ranganathan, N., Patel, M.I., Sathyamurthy, R.: An intelligent system for failure detection and control in an autonomous underwater vehicle. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 762–767 (2001)

    Article  Google Scholar 

  9. Siepmann, F., Wachsmuth, S.: A modeling framework for reusable social behavior. In: De Silva, R., Reidsma, D. (eds.) Work in progress workshop proceedings ICSR, pp. 93–96 (2011)

    Google Scholar 

  10. Sukchotrat, T.: Data mining-driven approaches for process monitoring and diagnosis. Ind. Manuf. Eng. (2009)

    Google Scholar 

  11. Tax, D.M.J.: One-class classification: concept-learning in the absence of counter-examples Ph.D. thesis. Delft University of Technology (2001)

    Google Scholar 

  12. Vallachira, S., Orkisz, M., Norrlöf, M., Butail, S.: Data-driven gearbox failure detection in industrial robots. IEEE Trans. Industr. Inf. 16(1), 193–201 (2020)

    Article  Google Scholar 

  13. Visinsky, M., Cavallaro, J., Walker, I.: Robotic fault detection and fault tolerance: a survey. Reliab. Eng. Syst. Saf. 46(2), 139–158 (1994). https://doi.org/10.1016/0951-8320(94)90132-5. http://www.sciencedirect.com/science/article/pii/0951832094901325

  14. Wienke, J., Wrede, S.: A middleware for collaborative research in experimental robotics. In: 2011 IEEE/SICE International Symposium on System Integration (SII), pp. 1183–1190, December 2011. https://doi.org/10.1109/SII.2011.6147617

  15. Wienke, J., Meyer zu Borgsen, S., Wrede, S.: A data set for fault detection research on component-based robotic systems. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 339–350. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40379-3_35

    Chapter  Google Scholar 

  16. Wienke, J., Wrede, S.: A Fault Detection Data Set for Performance Bugs in Component-Based Robotic Systems. https://doi.org/10.4119/unibi/2900911

  17. Wienke, J., Wrede, S.: Autonomous fault detection for performance bugs in component-based robotic systems. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3291–3297. IEEE (2016)

    Google Scholar 

  18. Wienke, J., Wrede, S.: Continuous regression testing for component resource utilization. In: IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pp. 273–280. IEEE (2016)

    Google Scholar 

  19. Wu, J., Zhang, X.: A PCA classifier and its application in vehicle detection. In: IJCNN 2001. International Joint Conference on Neural Networks. Proceedings (Cat. No. 01CH37222), vol. 1, pp. 600–604. IEEE (2001)

    Google Scholar 

  20. Xiao, B., Yin, S.: Exponential tracking control of robotic manipulators with uncertain dynamics and kinematics. IEEE Trans. Industr. Inf. 15(2), 689–698 (2019). https://doi.org/10.1109/TII.2018.2809514

    Article  Google Scholar 

  21. Zhao, D., Ni, W., Zhu, Q.: A framework of neural networks based consensus control for multiple robotic manipulators. Neurocomputing 140, 8–18 (2014). https://doi.org/10.1016/j.neucom.2014.03.041

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Jove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quintián, H. et al. (2020). Detecting Performance Anomalies in the Multi-component Software a Collaborative Robot. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62365-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62364-7

  • Online ISBN: 978-3-030-62365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics