Skip to main content

Convolutional CARMEN: Tomographic Reconstruction for Night Observation

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2019)

Abstract

To remove the distortion that the atmosphere causes in the observations performed with extremely large telescopes, correction techniques are required. To tackle this problem, adaptive optics systems uses wave front sensors obtain measures of the atmospheric turbulence and hence, estimate a reconstruction of the atmosphere when this calculation is applied in deformable mirrors, which compensates the aberrated wave front. In Multi Object Adaptive Optics (MOAO), several Shack-Hartmann wave front sensors along with reference guide stars are used to characterize the aberration produced by the atmosphere. Typically, this is a two-step process, where a centroiding algorithm is applied to the image provided by the sensor and the centroids from different Shack-Hartmanns wave front sensors are combined by using a Least Squares algorithm or an Artificial Neural Network, such as the Multi-Layer Perceptron. In this article a new solution based on Convolutional Neural Networks is proposed, which allows to integrate both the centroiding and the tomographic reconstruction in the same algorithm, getting a substantial improvement over the traditional Least Squares algorithm and a similar performance than the Multi-Layer Perceptron, but without the need of previously computing the centroiding algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Osborn, J., et al.: Open-loop tomography with artificial neural networks on CANARY: On-sky results. Mon. Not. R. Astron. Soc. 441, 2508–2514 (2014). https://doi.org/10.1093/mnras/stu758

    Article  Google Scholar 

  2. Guzmán, D., de Cos Juez, F.J., Lasheras, F.S., Myers, R., Young, L.: Deformable mirror model for open-loop adaptive optics using multivariate adaptive regression splines. Opt. Express 18, 6492–6505 (2010)

    Article  Google Scholar 

  3. Booth, M.J.: Adaptive optical microscopy: the ongoing quest for a perfect image. Light Sci. Appl. 3, e165 (2014)

    Article  Google Scholar 

  4. Carroll, J., Dubis, A.M., Godara, P., Dubra, A., Stepien, K.E.: Clinical applications of retinal imaging with adaptive optics. Clin. Appl. Retin. Imaging Adapt. Opt. 4(2), 78–83 (2011). https://doi.org/10.17925/USOR.2011.04.02.78. US Ophthalmic Review

    Article  Google Scholar 

  5. Wang, Y., et al.: Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence. Sci. Rep. 8, 1124 (2018)

    Article  Google Scholar 

  6. Dipper, N., Basden, A., Bitenc, U., Myers, R.M., Richards, A., Younger, E.J.: Adaptive optics real-time control systems for the E-ELT. In: Proceedings of the Third AO4ELT Conference, vol. 1, p. 41 (2013)

    Google Scholar 

  7. Ellerbroek, B.L.: First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes. JOSA A 11, 783–805 (1994)

    Article  Google Scholar 

  8. Vidal, F., Gendron, E., Rousset, G.: Tomography approach for multi-object adaptive optics. JOSA A 27, A253–A264 (2010)

    Article  Google Scholar 

  9. Sivo, G., et al.: First on-sky SCAO validation of full LQG control with vibration mitigation on the CANARY pathfinder. Opt. Express 22, 23565–23591 (2014)

    Article  Google Scholar 

  10. Osborn, J., et al.: First on-sky results of a neural network based tomographic reconstructor: Carmen on Canary. In: Marchetti, E., Close, L.M., Véran, J.-P. (eds.) Adaptive Optics Systems IV. International Society for Optics and Photonics, vol. 9148, p. 91484M (2014)

    Google Scholar 

  11. Suárez Gómez, S.L., et al.: Compensating atmospheric turbulence with convolutional neural networks for defocused pupil image wave- front sensors. In: de Cos Juez, F., et al. (eds.) HAIS 2018. LNCS, vol. 10870, pp. 411–421. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92639-1_34

    Chapter  Google Scholar 

  12. Hippler, S., et al.: Single conjugate adaptive optics for the ELT instrument METIS. Exp. Astron. (2018). https://doi.org/10.1007/s10686-018-9609-y

    Article  Google Scholar 

  13. Bendek, E.A., Hart, M., Powell, K.B., Vaitheeswaran, V., McCarthy, D., Kulesa, C.: Latest GLAO results and advancements in laser tomography implementation at the 6.5 m MMT telescope. In: Astronomical Adaptive Optics Systems and Applications IV, vol. 8149, p. 814907 (2011)

    Google Scholar 

  14. Beckers, J.M. Increasing the size of the isoplanatic patch with multiconjugate adaptive optics. In: European Southern Observatory Conference and Workshop Proceedings, vol. 30, p. 693 (1988)

    Google Scholar 

  15. Gendron, E., et al.: MOAO first on-sky demonstration with CANARY. Astron. Astrophys. 529, L2 (2011). https://doi.org/10.1051/0004-6361/201116658

    Article  Google Scholar 

  16. Basden, A.: DASP the Durham Adaptive optics Simulation Platform: Modelling and simulation of adaptive optics systems

    Google Scholar 

  17. Zilberman, A., Golbraikh, E., Kopeika, N.S.: Propagation of electromagnetic waves in Kolmogorov and non-Kolmogorov atmospheric turbulence: three-layer altitude model. Appl. Opt. 47, 6385–6391 (2008)

    Article  Google Scholar 

  18. Aghdam, H.H., Heravi, E.J.: Guide to Convolutional Neural Networks. Springer, New York (2017). vol. 10, pp. 973–978

    Google Scholar 

  19. Lasheras, J.E.S., Donquiles, C.G., Nieto, P.J., et al.: A methodology for detecting relevant single nucleotide polymorphism in prostate cancer with multivariate adaptive regression splines and backpropagation artificial neural networks. Neural Comput. Appl., 1–8 (2018). https://doi.org/10.1007/s00521-018-3503-4

  20. Suárez-Gómez, S.L., et al.: An approach using deep learning for tomographic reconstruction in solar observation. In: Proceedings of the Adaptive Optics for Extremely Large Telescopes 5; Instituto de Astrofísica de Canarias (IAC) (2017)

    Google Scholar 

  21. Suárez Gómez, S.L.: Técnicas estadísticas multivariantes de series temporales para la validación de un sistema reconstructor basado en redes neuronales (2016)

    Google Scholar 

  22. LeCun, Y., et al.: Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989)

    Article  Google Scholar 

  23. Mirowski, P.W., LeCun, Y., Madhavan, D., Kuzniecky, R.: Comparing SVM and convolutional networks for epileptic seizure prediction from intracranial EEG. In: 2008 IEEE Workshop on Machine Learning for Signal Processing, pp. 244–249 (2008)

    Google Scholar 

  24. Nagi, J., et al.: Max-pooling convolutional neural networks for vision-based hand gesture recognition. In: 2011 IEEE International Conference on Signal and Image Processing Applications (ICSIPA), pp. 342–347 (2011)

    Google Scholar 

  25. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  26. Suárez Gómez, S.L., et al.: Improving adaptive optics reconstructions with a deep learning approach. In: de Cos Juez, F.J., et al. (eds.) Hybrid Artificial Intelligent Systems, pp. 74–83. Springer International Publishing, Cham (2018)

    Chapter  Google Scholar 

  27. Osborn, J., et al.: Open-loop tomography using artificial neural networks. Proc. Adapt. Opt. Extrem. Large Telesc. 2, 2420–2434 (2011)

    Google Scholar 

  28. Suárez Gómez, S.L., et al.: Analysing the performance of a tomographic reconstructor with different neural networks frameworks. In: International Conference on Intelligent Systems Design and Applications, pp. 1051–1060 (2016)

    Google Scholar 

  29. Osborn, J., et al.: Using artificial neural networks for open-loop tomography. Opt. Express 20, 2420–2434 (2012). https://doi.org/10.1364/oe.20.002420

    Article  Google Scholar 

  30. Hardy, J.W.: Adaptive optics for astronomical telescopes. Oxford University Press on Demand, vol. 16 (1998)

    Google Scholar 

  31. Alonso Fernández, J.R., Díaz Muñiz, C., Garcia Nieto, P.J., de Cos Juez, F.J., Sánchez Lasheras, F., Roqueñí, M.N.: Forecasting the cyanotoxins presence in fresh waters: A new model based on genetic algorithms combined with the MARS technique. Ecol. Eng., 68–78 (2013). https://doi.org/10.1016/j.ecoleng.2012.12.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Sánchez Lasheras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García Riesgo, F., Suárez Gómez, S.L., Sánchez Lasheras, F., González Gutiérrez, C., Peñalver San Cristóbal, C., de Cos Juez, F.J. (2019). Convolutional CARMEN: Tomographic Reconstruction for Night Observation. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2019. Lecture Notes in Computer Science(), vol 11734. Springer, Cham. https://doi.org/10.1007/978-3-030-29859-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29859-3_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29858-6

  • Online ISBN: 978-3-030-29859-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics