Skip to main content
Log in

A new (3+1)-dimensional Sakovich equation in nonlinear wave motion: Painlevé integrability, multiple solitons and soliton molecules

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this work, we develop a new (3+1)-dimensional Sakovich equation to describe nonlinear wave propagation. We use the truncation expansion method to confirm the Painlevé integrability of the newly established equation. Then, its general soliton solution and multiple-soliton solutions are constructed. We also verify that the equation possesses soliton molecules. A few of interesting features for the equation are discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Ablowitz, M.J., Musslimani, Z.H.: Integrable nonlocal nonlinear Schrödinger equation. Phys. Rev. Lett. 110, 064105 (2013)

    Google Scholar 

  2. Sakovich, A., Sakovich, S.: The short pulse equation is integrable. J. Phys. Soc. Jpn. 74, 239–241 (2005)

    MATH  Google Scholar 

  3. Hirota, H.: Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    MATH  Google Scholar 

  4. Hereman, W., Nuseir, A.: Symbolic methods to construct exact solutions of nonlinear partial differential equations. Math. Comput. Simulat. 43, 13–27 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Bekir, A.: Painleve test for some (2+1)-dimensional nonlinear equations. Chaos Solitons Fractals 32, 449–455 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Qiao, Z.J.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Ma, W.X., Xu, X.X.: Positive and negative hierarchies of integrable lattice models associated with a Hamiltonian pair. Int. J. Theor. Phys. 43, 219–235 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Sakovich, S.: A New Painleve-integrable equation possessing KdV-type. Nonlinear Phenom. Complex Sys. 22, 299–304 (2019)

    MATH  Google Scholar 

  9. Wazwaz, A.M.: A new (3+1)-dimensional Painleve-integrable Sakovich equation: multiple soliton solutions. Int. J. Numer. Methods Heat Fluid Flow 31, 3030–3035 (2020)

    Google Scholar 

  10. Wang, R.R., Wang, Y.Y., Dai, C.Q.: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser. Opt. Laser Technol. 152, 108103 (2022)

    Google Scholar 

  11. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Google Scholar 

  12. Fang, J.J., Mou, D.S., Zhang, H.C., Wang, Y.Y.: Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model. Optik 228, 166186 (2021)

    Google Scholar 

  13. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

    Google Scholar 

  14. Wen, X.K., Feng, R., Lin, J.H., Liu, W., Chen, F., Yang, Q.: Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials. Optik 248, 168092 (2021)

    Google Scholar 

  15. Chen, Y.X.: Combined optical soliton solutions of a (1+1)-dimensional time fractional resonant cubic-quintic nonlinear Schrödinger equation in weakly nonlocal nonlinear media. Optik 203, 163898 (2020)

    Google Scholar 

  16. Galindo, C., Monserrat, F., Pérez-Callejo, E.: Algebraic integrability of planar polynomial vector fields by extension to Hirzebruch surfaces. Qual. Theory Dyn. Syst. 21, 126 (2022)

    MathSciNet  MATH  Google Scholar 

  17. Seadawy, A.R., Younis, M., Iqbal, M.S., Baber, M.Z., Rizvi, S.T.R., Raheem, A.: Soliton behavior of algae growth dynamics leading to the variation in nutrients concentration. J. King Saud Univ. Sci. 34, 102071 (2022)

    Google Scholar 

  18. Rizvi, S.T.R., Seadawy, A.R., Farah, N., Ahmad, S.: Application of Hirota operators for controlling soliton interactions for Bose-Einstien condensate and quintic derivative nonlinear Schrödinger equation. Chaos Solitons Fractals 159, 112128 (2022)

    Google Scholar 

  19. Rizvi, S.T.R., Seadawy, A.R., Akram, U.: New dispersive optical soliton for an nonlinear Schrodinger equation with Kudryashov law of refractive index along with P-test. Opt. Quantum Electron. 54, 310 (2022)

    Google Scholar 

  20. Seadawy, A.R., Akram, U., Rizvi, S.T.R.: Dispersive optical solitons along with integrability test and one soliton transformation for saturable cubic-quintic nonlinear media with nonlinear dispersion. J. Geom. Phys. 177, 104521 (2022)

    MathSciNet  MATH  Google Scholar 

  21. Bashir, A., Seadawy, A.R., Rizvi, S.T.R., Ali, I., Althubiti, S.: Dispersive dromions, conserved densities and fluxes with integrability via P-test for couple of nonlinear dynamical system. Results Phys. 33, 105151 (2022)

    Google Scholar 

  22. Rizvi, S.T.R., Seadawy, A.R., Akram, U., Younis, M., Althobaiti, A.: Solitary wave solutions along with Painleve analysis for the Ablowitz-Kaup-Newell-Segur water waves equation. Mod. Phys. Lett. B 36, 2150548 (2022)

    MathSciNet  Google Scholar 

  23. Bashir, A., Seadawy, A.R., Rizvi, S.T.R., Younis, M., Ali, I., Mousa, A.A.: Application of scaling invariance approach, P-test and soliton solutions for couple of dynamical models. Results Phys. 25, 104227 (2021)

    Google Scholar 

  24. Li, B.Q., Ma, Y.L.: Multiple-lump waves for a (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation arising from incompressible fluid. Comput. Math. Appl. 76, 204–214 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Li, B.Q., Ma, Y.L.: The complex short pulse equation: multi-folded rogue waves and phase transition. Appl. Math. Lett. 135, 108399 (2023)

    MATH  Google Scholar 

  26. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Google Scholar 

  27. Fang, J.J., Mou, D.S., Zhang, H.C., Wang, Y.Y.: Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model. Optik 228, 166186 (2021)

    Google Scholar 

  28. Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrödinger Equation. Chin. Phys. Lett. 38, 090501 (2021)

    Google Scholar 

  29. Wen, X.K., Feng, R., Lin, J.H., Liu, W., Chen, F., Yang, Q.: Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials. Optik 248, 168092 (2021)

    Google Scholar 

  30. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrödinger model by the MPS-PINN method. Nonlinear Dyn. 109, 3041–3050 (2022)

    Google Scholar 

  31. Ieda, J., Miyakawa, T., Wadati, M.: Exact analysis of soliton dynamics in spinor Bose-Einstein condensates. Phys. Rev. Lett. 93, 194102 (2004)

    Google Scholar 

  32. Zhang, H., Tang, D.Y., Zhao, L.M., Wu, X.: Dark pulse emission of a fiber laser. Phys. Rev. A 80, 045803 (2009)

    Google Scholar 

  33. Theocharis, G., Weller, A., Ronzheimer, J.P., Gross, C., Oberthaler, M.K., Kevrekidis, P.G., Frantzeskakis, D.J.: Multiple atomic dark solitons in cigar-shaped Bose-Einstein condensates. Phys. Rev. A 81, 063604 (2010)

    Google Scholar 

  34. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: New extended Kadomtsev-Petviashvili equation: multiple soliton solutions, breather, lump and interaction solutions. Nonlinear Dyn. 104, 1581–1594 (2021)

    Google Scholar 

  35. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: A new (3+1)-dimensional Kadomtsev-Petviashvili equation and its integrability, multiple-solitons, breathers and lump waves. Math. Comput. Simul. 187, 505–519 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Li, B.Q.: New breather and multiple-wave soliton dynamics for generalized Vakhnenko-Parkes equation with variable coefficients. J. Comput. Nonlinear Dyn. 16, 091006 (2021)

    Google Scholar 

  37. Tang, D.Y., Zhao, L.M., Zhao, B., Liu, A.Q.: Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Phys. Rev. A 72, 043816 (2005)

    Google Scholar 

  38. Kaur, L., Wazwaz, A.M.: Painleve analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469–2477 (2018)

    MATH  Google Scholar 

  39. Wazwaz, A.M.: Multiple soliton solutions for a (2+1)-dimensional integrable KdV6 equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1466–1472 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Wazwaz, A.M.: Kadomtsev-Petviashvili hierarchy: N-soliton solutions and distinct dispersion. Appl. Math. Lett. 52, 74–79 (2016)

    MathSciNet  MATH  Google Scholar 

  41. Xu, G.Q.: Painlevé classiffication of a generalized coupled Hirota system. Phys. Rev. E 74, 027602 (2006)

    MathSciNet  Google Scholar 

  42. Hirota, R.: The Direct Method in Soliton Theory. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  43. Wazwaz, A.M.: The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves. Appl. Math. Comput. 201, 489–503 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Li, B.Q., Ma, Y.L.: Interaction dynamics of hybrid solitons and breathers for extended generalization of Vakhnenko equation. Nonlinear Dyn. 102, 1787–1799 (2020)

    Google Scholar 

  45. Li, B.Q.: Loop-like kink breather and its transition phenomena for the Vakhnenko equation arising from high-frequency wave propagation in electromagnetic physics. Appl. Math. Lett. 112, 106822 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Zhaqilao: Dynamics of localized wave solutions for the coupled Higgs field equation. Nonlinear Dyn. 101 1181–1198 (2020)

  47. Guo, J.T., He, J.S., Li, M.H., Mihalache, D.: Exact solutions with elastic interactions for the (2+1)-dimensional extended Kadomtsev-Petviashvili equation. Nonlinear Dyn. 101, 2413–2422 (2020)

    Google Scholar 

  48. Biondini, G.: Line soliton interactions of the Kadomtsev-Petviashvili equation. Phys. Rev. Lett. 99, 064103 (2007)

    Google Scholar 

  49. Chakravarty, S., Kodama, Y.: Soliton solutions of the KP equation and application to shallow water waves. Stud. Appl. Math. 123, 83–151 (2009)

    MathSciNet  MATH  Google Scholar 

  50. Chen, S.H., Zhou, Y., Baronio, F., Mihalache, D.: Special types of elastic resonant soliton solutions of the Kadomtsev-Petviashvili II equation. Rom. Rep. Phys. 70, 102 (2018)

    Google Scholar 

  51. Ma, Y.L.: N-solitons, breathers and rogue waves for a generalized Boussinesq equation. Int. J. Comput. Math. 97, 1648–1661 (2020)

    MathSciNet  MATH  Google Scholar 

  52. Ma, Y.L., Wazwaz, A.M., Li, B.Q.: Novel bifurcation solitons for an extended Kadomtsev-Petviashvili equation in fluids. Phys. Lett. A 413, 127585 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Ma, Y.L., Li, B.Q.: Bifurcation solitons and breathers for the nonlocal Boussinesq equations. Appl. Math. Lett. 124, 107677 (2022)

    MathSciNet  MATH  Google Scholar 

  54. Chen, S.H., Grelu, P., Mihalache, D., Baronio, F.: Families of rational soliton solutions of the Kadomtsev-Petviashvili i equation. Rom. Rep. Phys. 68, 1407–1424 (2016)

    Google Scholar 

  55. Jiang, Y., Rao, J.G., Mihalache, D., He, J.S., Cheng, Y.: Rogue breathers and rogue lumps on a background of dark line solitons for the Maccari system. Commun. Nonlinear Sci. Numer. Simulat. 102, 105943 (2021)

    MathSciNet  MATH  Google Scholar 

  56. Li, B.Q., Ma, Y.L.: N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics. Nonlinear Dyn. 101, 2449–2461 (2020)

    Google Scholar 

  57. Hause, A., Hartwig, H., Bohm, M., Mitschke, F.: Binding mechanism of temporal soliton molecules. Phys. Rev. A 78, 063817 (2008)

    Google Scholar 

  58. Jia, M., Lin, J., Lou, S.Y.: Soliton and breather molecules in few-cycle-pulse optical model. Nonlinear Dyn. 100, 3745–3757 (2020)

    Google Scholar 

  59. Yan, Z.W., Lou, S.Y.: Soliton molecules in Sharma-Tasso-Olver-Burgers equation. Appl. Math. Lett. 104, 106271 (2020)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang-Qing Li.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interests with publication of this work.

Ethical approval

The authors ensure the compliance with ethical standards for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, YL., Wazwaz, AM. & Li, BQ. A new (3+1)-dimensional Sakovich equation in nonlinear wave motion: Painlevé integrability, multiple solitons and soliton molecules. Qual. Theory Dyn. Syst. 21, 158 (2022). https://doi.org/10.1007/s12346-022-00689-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00689-5

Keywords

Navigation