Skip to main content
Log in

Non–Equivalence Between the Melnikov and the Averaging Methods for Nonsmooth Differential Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

It is known that for smooth differential systems in the plane \({\mathbb {R}}^2\) the Melnikov and the averaging methods for studying the limit cycles produce the same results. Here we prove that this is not the case for nonsmooth differential systems in the plane. More precisely, we prove that the linear system \({\dot{x}}=y\), \({\dot{y}}=-x\), can produce at most 5 crossing limit cycles using the averaging theory of first order and also produce at most 5 crossing limit cycles using the averaging theory of second order, when it is perturbed by discontinuous piecewise polynomials of two pieces separated by the cubic curve \(y=x^3\), and having in each piece a quadratic polynomial differential system. While using the Melnikov theory up to second order these discontinuous piecewise differential systems already produce 7 crossing limit cycles having in each piece a linear polynomial differential system. Note that the class of the linear polynomial differential systems is contained into the class of quadratic polynomial differential systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This paper has no data.

References

  1. Andrade, Kds, Cespedes, O.A.R., Cruz, D.R., Novaes, D.D.: Higher order Melnikov analysis for planar piecewise linear vector fields with nonlinear switching curve. J. Differential Equations 287, 1–36 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bastos, J.R., Buzzi, C.A., Llibre, J., Novaes, D.D.: Melnikov analysis in nonsmooth differential systems with nonlinear switching manifold. J. Differential Equations 267, 3748–3767 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems, Theory and Applications. Springer-Verlag, London (2008)

    MATH  Google Scholar 

  4. Browder, F.: Fixed point theory and nonlinear problems. Bull. Amer. Math. Soc. 9, 1–39 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buică, A., Llibre, L.: Averaging methods for finding periodic orbits via Brouwer degree. Bull. Sci. Math. 128, 7–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buzzi, C.A., Pessoa, C., Torregrosa, J.: Piecewise linear perturbations of a linear center. Discrete Contin. Dyn. Syst. 9, 3915–3936 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cardin, P.T., Torregrosa, J.: Limit cycles in planar piecewise linear differential systems with nonregular separation line. Physica D 337, 67–82 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, X., Llibre, J., Zhang, W.: Averaging approach to cyclicity of Hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete Contin. Dyn. Syst. Ser. B 22, 3953–3965 (2017)

    MathSciNet  MATH  Google Scholar 

  9. Chen, X., Llibre, J., Zhang, W.: Cyclicity of \((1,3)\)-switching FF type equilibria. Discrete Contin. Dyn. Syst. Ser. B 24, 6541–6552 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Chen, X., Romanovski, V.G., Zhang, W.: Degenerate Hopf bifurcations in a family of FF-type switching systems. J. Math. Anal. Appl. 432, 1058–1076 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Filippov, A.F.: Differential Equation with Discontinuous Right-Hand Sides. Kluwer Academic, Amsterdam (1988)

    Book  MATH  Google Scholar 

  12. Giné, J., Grau, M., Llibre, J.: Averaging theory at any order for computing periodic orbits. Phys. D 250, 58–65 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, M.: On the maximum number of periodic solutions of piecewise smooth periodic equations by average method. J. Appl. Anal. Comput. 7, 788–794 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Han, M., Romanovski, V.G., Zhang, X.: Equivalence of the Melnikov function method and the averaging method. Qual. Theory Dyn. Syst. 15, 471–479 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, M., Sheng, L.: Bifurcation of limit cycles in piecewise smooth systems via Melnikov function. J. Appl. Anal. Comput. 5, 809–815 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Han, M., Zhang, W.: On Hopf bifurcation in non-smooth planar systems. J. Differential Equations 248, 2399–2416 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Itikawa, J., Llibre, J., Novaes, D.D.: A new result on averaging theory for a class of discontinuous planar differential systems with applications. Rev. Mat. Iberoam. 33, 1247–1265 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Karlin, S.J., Studden, W.J.: Tchebycheff systems: With Applications in Analysis and Statistics, Pure Appl. Math. Interscience Publishers, New York, London, Sidney (1966)

    MATH  Google Scholar 

  19. Li, T., Llibre, J.: Limit cycles in piecewise polynomial systems allowing a non-regular switching boundary. Physica D 419, 132855 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Llibre, J., Mereu, A.C., Novaes, D.D.: Averaging theory for discontinuous piecewise differential systems. J. Differential Equations 258, 4007–4032 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Llibre, J., Novaes, D.D., Teixeira, M.A.: Higher order averaging theory for finding periodic solutions via Brouwer degree. Nonlinearity 27, 563–583 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Llibre, J., Novaes, D.D., Teixeira, M.A.: On the birth of limit cycles for non-smooth dynamical systems. Bull. Sci. Math. 139, 229–244 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Llibre, J., Ponce, E.: Three nested limit cycles in discontinuous piecewise linear differential systems with two zones,. Dynam. Contin. Discrete Impuls. Systems. Ser. B Appl. Algorithms 19, 325–335 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Llibre, J., Tang, Y.: Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete Contin. Dyn. Syst. Ser. B 24, 1769–1784 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Llibre, J., Zhang, X.: Limit cycles for discontinuous planar piecewise linear differential systems separated by one straight line and having a center. J. Math. Anal. Appl. 467, 537–549 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lloyd, N.G.: Degree Theory, Cambridge Tracts in Mathematics, vol. 73. Cambridge University Press, Cambridge-New York-Melbourne (1978)

    Google Scholar 

  27. Makarenkov, O., Lamb, J.S.W.: Dynamics and bifurcations of nonsmooth systems: a survey. Phys. D 241, 1826–1844 (2012)

    Article  MathSciNet  Google Scholar 

  28. Sanders, J.A., Verhulst, F., Murdock, J.: Averaging Method in Nonlinear Dynamical Systems, Appl. Math. Sci., vol. 59. Springer, New York (2007)

    MATH  Google Scholar 

  29. Simpson, D.J.W.: Bifurcations in Piecewise-Smooth Continuous Systems, World Scientific Series on Nonlinear Science A, vol. 69. World Scientific, Singapore (2010)

    Google Scholar 

  30. Wei, L., Zhang, X.: Averaging theory of arbitrary order for piecewise smooth differential systems and its application. J. Dynam. Differential Equations 30, 55–79 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank to the reviewers their comments which help us to improve this paper. The first author is partially supported by the grant CSC #202106240110 from the P. R. China. The second author is partially supported by the Agencia Estatal de Investigación grant PID2019-104658GB-I00, and the H2020 European Research Council grant MSCA-RISE-2017-777911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifei Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Llibre, J. Non–Equivalence Between the Melnikov and the Averaging Methods for Nonsmooth Differential Systems. Qual. Theory Dyn. Syst. 21, 114 (2022). https://doi.org/10.1007/s12346-022-00643-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00643-5

Keywords

Mathematics Subject Classification

Navigation