Skip to main content
Log in

Representation of Solutions to Linear Quaternion Differential Equations With Delay

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, linear quaternion differential equations (LQDEs) with delay attracts our attention. In the light of delayed quaternion matrix exponential and the method of variation of constants, we derive the solutions of homogeneous and nonhomogeneous LQDEs with delay under the assumption of permutation matrices. Further, we investigate the solutions of homogeneous and nonhomogeneous LQDEs with delay without the requirement of permutation matrices. Finally, examples illustrate the validity of the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No Data.

References

  1. Gibbon, J.D.: A quaternionic structure in the three-dimensional Euler and ideal magneto-hydrodynamics equations. Physica D 166, 17–28 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Gibbon, J.D., Holm, D.D., Kerr, R.M., et al.: Quaternions and particle dynamics in the Euler fluid equations. Nonlinearity 19, 1969–1983 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gibbon, J.D., Holm, D.D.: Lagrangian particle paths and ortho-normal quaternion frames. Nonlinearity 20, 1745–1759 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Adler, S.L.: Quaternionic quantum mechanics and quantum fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  5. Adler, S.L.: Quaternionic quantum field theory. Commun. Math. Phys. 104, 611–656 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Giardino, S.: Quaternionic quantum mechanics in real Hilbert space. J. Geom. Phys. 158, 103956 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, Y., Wu, J., Bao, H.: Finite-time stabilization for delayed quaternion-valued coupled neural networks with saturated impulse. Appl. Math. Comput. 425, 127083 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jiang, Q., Wang, Q.: Almost periodic solutions for quaternion-valued neural networks with mixed delays on time scales. Neurocomputing 439, 363–373 (2021)

    Article  Google Scholar 

  9. Li, D., Zhang, Z., Zhang, X.: Periodic solutions of discrete-time quaternion-valued BAM neural networks. Chaos, Solitons & Fractals 138, 110144 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, Y., Meng, Z.: Global distributed attitude tracking control of multiple rigid bodies via quaternion-based hybrid feedback. IEEE Trans. Control Network Sys. 8, 367–378 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kristiansen, R., Nicklasson, P.J., Gravdahl, J.T.: Satellite attitude control by quaternion-based backstepping. IEEE Trans. Control Syst. Technol. 17, 227–232 (2009)

    Article  Google Scholar 

  12. Campos, J., Mawhin, J.: Periodic solutions of quaternionic-valued ordinary differential equations. Annali di Matematica 185, S109–S127 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cai, Z., Kou, K.: Laplace transform: a new approach in solving linear quaternion differential equations. Mathemat. Method. Appl. Sci. 41, 4033–4048 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Donachali, A.K., Jafari, H.: A decomposition method for solving quaternion differential equations. Int. J. Appl. Comput. Mathemat. 6, 107 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kou, K., Xia, Y.: Linear quaternion differential equations: basic theory and fundamental results. Stud. Appl. Math. 141, 3–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kou, K., Liu, W., Xia, Y.: Solve the linear quaternion-valued differential equations having multiple eigenvalues. J. Math. Phys. 60, 023510 (2019)

    MathSciNet  MATH  Google Scholar 

  17. Xia, Y., Huang, H., Kou, K.: An algorithm for solving linear nonhomogeneous quaternion-valued differential equations (2016). arXiv:1602.08713

  18. Kyrchei, I.I.: Linear differential systems over the quaternion skew field (2018). arXiv:1812.03397

  19. Gasull, A., Llibre, J., Zhang, X.: One-dimensional quaternion homogeneous polynomial differential equations. J. Math. Phys. 50, 082705 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Cai, Z., Kou, K.: Solving quaternion ordinary differential equations with two-sided coefficients. Qualitative Theory Dynamical Syst. 17, 441–462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Suo, L., Fečkan, M., Wang, J.: Quaternion-valued linear impulsive differential equations. Qualitative Theory Dynamical Syst. 20, 33 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cheng, D., Kou, K., Xia, Y.: Floquet theory for quaternion-valued differential equations. Qualitative Theory Dynamical Syst. 19, 14 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen, D., Fečkan, M., Wang, J.: On the stability of linear quaternion-valued differential equations. Qualitative Theory Dynamical Syst. 21, 9 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cai, Z., Kou, K., Zhang, W.: Solutions of quaternion-valued differential equations with or without commutativity (2020). arXiv:2012.06744

  25. Chen, D., Fečkan, M., Wang, J.: Investigation of controllability and observability for linear quaternion-valued systems from its complex-valued systems. Qualitative Theory Dynamical Syst. 21, 66 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen, D., Fečkan, M., Wang, J.: Hyers-Ulam stability for linear quaternion-valued differential equations with constant coefficient. Rocky Mountain Mt. J. Math. (2021). https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/210126-Wang.pdf

  27. Khusainov, D.Y., Shuklin, G.V.: Linear autonomous time-delay system with permutation matrices solving. Studies of the University of Žilina Mathematical Series 17, 101–108 (2003)

    MathSciNet  MATH  Google Scholar 

  28. Mahmudov, N.I.: Delayed perturbation of Mittag-Leffler functions and their applications to fractional linear delay differential equations. Mathemat. Methods Appl. Sci. 42, 5489–5497 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Aydin, M., Mahmudov, N.I.: On a study for the neutral Caputo fractional multi-delayed differential equations with noncommutative coefficient matrices. Chaos, Solitons & Fractals 161, 112372 (2022)

    Article  MathSciNet  Google Scholar 

  30. Lv, W., He, H., Li, K.: Robust optimal control of a network-based SIVS epidemic model with time delay. Chaos, Solitons & Fractals 161, 112378 (2022)

    Article  MathSciNet  Google Scholar 

  31. Li, M., Wang, J.: Existence results and Ulam type stability for conformable fractional oscillating system with pure delay. Chaos, Solitons & Fractals 161, 112317 (2022)

    Article  MathSciNet  Google Scholar 

  32. Serrano, F.E., Ghosh, D.: Robust stabilization and synchronization in a network of chaotic systems with time-varying delays. Chaos, Solitons & Fractals 159, 112134 (2022)

    Article  MathSciNet  Google Scholar 

  33. Kaabar, M.K.A., Kaplan, M., Siri, Z.: New exact soliton solutions of the (3+1)-dimensional conformable Wazwaz-Benjamin-Bona-Mahony equation via two novel techniques. J. Function Spaces 2021, Art.4659905 (2021)

  34. Kaabar, M.K.A., Martínez, F., Gómez-Aguilar, J.F., et al.: New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method. Mathematical Methods Appl. Sci. 44, 11138–11156 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Raza, N., Rafiq, M.H., Kaplan, M., et al.: The unified method for abundant soliton solutions of local time fractional nonlinear evolution equations. Results Phys. 22, 103979 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and valuable comments. The authors thank the help from the editor too.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (12161015), Guizhou Data Driven Modeling Learning and Optimization Innovation Team ([2020]5016), Major Project of Guizhou Postgraduate Education and Teaching Reform (YJSJGKT[2021]041), Science and Technology Development Fund, Macao S.A.R (FDCT/0036/2021/AGJ) and Science and Technology Planning Project of Guangzhou City, China [Grant No. 201907010043]

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, T., Kou, K.I. & Wang, J. Representation of Solutions to Linear Quaternion Differential Equations With Delay. Qual. Theory Dyn. Syst. 21, 118 (2022). https://doi.org/10.1007/s12346-022-00648-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00648-0

Keywords

Mathematics Subject Classification

Navigation