Skip to main content
Log in

Quasi-Periodic Solutions of Derivative Beam Equation on Flat Tori

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider a class of nonlinear beam equations on flat tori \(\mathbb {T}^d_{\mathfrak {L}}\),

$$\begin{aligned} u_{tt}+\Delta ^2u=\epsilon (-\Delta )^{\alpha } f(\omega t,x,(-\Delta )^{\beta }u), \quad 0<\alpha +\beta \le 1 \end{aligned}$$

and prove that the equation admits many quasi-periodic solutions with the non-resonant frequencies \(\omega \). The main proof is based on an abstract Nash-Moser type implicit function theorem developed in Berti and Bolle (Nonlinearity 25(9):2579–2613, 2012; J Eur Math Soc 15(1):229–286, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

References

  1. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation. Anal. PDE. 11(3), 775–799 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bambusi, D., Langella, B., Montalto, R.: Reducibility of non-resonant transport equation on \(\mathbb{T} ^d\) with unbounded perturbations. Ann. Henri Poincaré. 20(6), 1893–1929 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berti, M., Bolle, P.: Sobolev quasi-periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25(9), 2579–2613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T} ^d\) with a multiplicative potential. J. Eur. Math. Soc. 15(1), 229–286 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berti, M., Corsi, L., Procesi, M.: An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys. 334, 1413–1454 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berti, M., Maspero, A.: Long time dynamics of Schrödinger and wave equations on flat tori. J. Differ. Equ. 267(2), 1167–1200 (2019)

    Article  MATH  Google Scholar 

  7. Bhatia, R.: Matrix Analysis. Springer-Verlag, New York (1997)

    Book  MATH  Google Scholar 

  8. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Shrödinger equation. Ann. Math. 148, 363–439 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bourgain, J.: Greens function estimates for lattice Schrödinger operators and applications. Annals of Mathematics Studies vol. 158, Princeton University Press, Princeton, NJ (2005)

  10. Chen, B., Gao, Y., Jiang, S., Li, Y.: Quasi-periodic solutions to nonlinear beam equations on compact Lie groups with a multiplicative potential. J. Differ. Equ. 264(11), 6959–6993 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Corsi, L., Montalto, R.: Quasi-periodic solutions for the forced Kirchhoff equation on \(\mathbb{T} ^d\). Nonlinearity 31(11), 5075–5109 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Craig, W., Wayne, C.E.: Newtons method and periodic solutions of nonlinear wave equations. Commun. Pure Appl. Math. 46(11), 1409–1498 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Eliasson, H., Grébert, B., Kuksin, S.: KAM for the nonlinear beam equation. Geom. Funct. Anal. 26(6), 1588–1715 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Eliasson, H., Kuksin, S.: KAM for the nonlinear Schrödinger equation. Ann. Math. 172(1), 371–435 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Feola, R., Grebért, B.: Reducibility of Schrödinger equation on the Sphere. Int. Math. Res. Not. 2021(19), 15082–15120 (2021)

    Article  MATH  Google Scholar 

  16. Feola, R., Grebért, B., Nguyen, T.: Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential. J. Math. Phys. 61(7), 071501 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feola, R., Giuliani, F., Montalto, R., Procesi, M.: Reducibility of first order linear operators on tori via Mosers theorem. J. Funct. Anal. 279(2), 932–970 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ge, C., Geng, J., Lou, Z.: KAM theory for the reversible perturbations of 2D linear beam equations. Math. Z. 297, 1693–1731 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ge, C., Geng, J., Lou, Z.: KAM Tori for Completely Resonant Hamiltonian Derivative Beam Equations on \(\mathbb{T} ^2\). J. Dyn. Differ. Equ. 33(1), 525–547 (2021)

    Article  MATH  Google Scholar 

  20. Geng, J., You, J.: A KAM theorem for Hamiltonian partial differential equations in higher dimensional spaces. Commun. Math. Phys. 262(2), 343–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226(6), 5361–5402 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Grébert, B., Paturel, E.: KAM for the Klein Gordon equation on \(\mathbb{S} ^d\). Boll. Unione Mat. Ital. 9, 237–288 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grébert, B., Paturel, E.: On reducibility of quantum harmonic oscillator on \(\mathbb{R} ^d\) with quasiperiodic in time potential. Ann. Fac. Sci. Toulouse Math. 28(5), 977–1014 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mi, L., Cong, H.: Quasi-periodic solutions for d-dimensional beam equation with derivative nonlinear perturbation. J. Math. Phys. 56(7), 072702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Montalto, R.: A reducibility result for a class of linear wave equations on \(\mathbb{T} ^d\). Int. Math. Res. Not. 2019(6), 1788–1862 (2019)

    Article  MATH  Google Scholar 

  26. Procesi, C., Procesi, M.: A KAM algorithm for the resonant non-linear Schrödinger equation. Adv. Math. 272, 399–470 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Procesi, M., Procesi, C.: Reducible quasi-periodic solutions for the non linear Schrödinger equation. Boll. Unione Mat. Ital. 9, 189–236 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shi, Y., Xu, J.: Quasi-periodic solutions for two dimensional modified Boussinesq equation. J. Dyn. Differ. Equ. 33(2), 741–766 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shi, Y.: On the existence of Sobolev quasi-periodic solutions of multidimensional nonlinear beam equation. J. Math. Phys. 57(10), 102701 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yuan, X.: KAM theorem with normal frequencies of finite limit points for some shallow water equations. Comm. Pure Appl. Math. 74(6), 1193–1281 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by the Postdoctoral Foundation of Jiangsu Province(No. 2021K163B), China Postdoctoral Foundation (No. 2021M692717), and the National Natural Science Foundation of China (No. 12101542).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingte Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y. Quasi-Periodic Solutions of Derivative Beam Equation on Flat Tori. Qual. Theory Dyn. Syst. 21, 121 (2022). https://doi.org/10.1007/s12346-022-00654-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00654-2

Keywords

Navigation