Skip to main content
Log in

Dynamic Analysis of Multi-factor Influence on a Holling Type II Predator–Prey Model

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper concerns a Holling type II predator–prey system. We pay particular attention to the multi-factor influence including the Allee effect, fear effect, prey refuge and delay. The existence and stability of the equilibria of the system are investigated. Taking the prey refuge as a bifurcating parameter, a threshold condition is given for the local stability of the system without delay and show that the system may occur a supercritical Hopf bifurcation. Taking the delay as a bifurcating parameter, the delayed system undergoes a Hopf bifurcation at the positive equilibrium. The direction of Hopf bifurcation and the stability of bifurcating periodic solution are investigated by the center manifold theorem and normal form theory. We show that the delay, Allee effect, fear effect and prey refuge can enrich the dynamic behaviors. Our mathematical analysis shows that the influence of fear effect and Allee effect is negative, while the impact of the prey refuge is positive. Moreover, it shows that the delay can switch the stability of the system. Examples with their numerical simulations are given to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Our manuscript has no associated data.

References

  1. Chen, F., Chen, W., Wu, Y., Ma, Z.: Permanence of a stage-structured predator–prey system. Appl. Math. Comput. 219(17), 8856–8862 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, L., Chen, F.: Dynamic behaviors of the periodic predator–prey system with distributed time delays and impulsive effect. Nonlinear Anal. Real World Appl. 12(4), 2467–2473 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, N., Kao, Y., Chen, F., Fen, B., Li, S.: On a predator–prey system interaction under fluctuating water level with nonselective harvesting. Open Math. 18, 458–475 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu, R., Li, L., Lin, Q.: A Holling type commensal symbiosis model involving Allee effect. Commun. Math. Biol. Neurosci. 2018, 6 (2018)

    Google Scholar 

  5. Huang, J., Gong, Y., Chen, J.: Multiple bifurcations in a predator–prey system of Holling and Leslie type with constant-yield prey harvesting. Int. J. Bifurcat. Chaos 23, 1350164 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Huang, J., Xia, X., Zhang, X., Ruan, S.: Bifurcation of codimension 3 in a predator–prey system of Leslie type with simplified Holling type IV functional response. Int. J. Bifurcat. Chaos 26, 1650034 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Song, Y., Tang, X.: Stability, steady-state bifurcations and Turing patterns in a predator–prey model with herd behavior and prey-taxis. Stud. Appl. Math. 139(3), 371–404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predater–prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)

    Article  MATH  Google Scholar 

  9. Yan, S., Jia, D., Zhang, T., Yuan, S.: Pattern dynamics in a diffusive predator–prey model with hunting cooperations. Chaos Soliton. Fract. 130, 109428 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, J., Zhang, T., Yuan, S.: Turing pattern induced by cross-diffusion in a predator–prey model with pack predation–herd behavior. Int. J. Bifurcat. Chaos 30, 2050103 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhang, T., Liu, X., Meng, X., Zhang, T.: Spatio-temporal dynamics near the steady state of a planktonic system. Comput. Math. Appl. 75(12), 4490–4504 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Holling, C.S.: The functional response of predator to prey density and its role in mimicry and population regulation. Can. Entomol. Suppl. 97(S45), 5–60 (1965)

    Article  Google Scholar 

  13. Xu, R.: Global stability and Hopf bifurcation of a predator–prey model with stage structure and delayed predator response. Nonlinear Dyn. 67, 1683–1693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kar, T.K.: Stability analysis of a prey–predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simul. 10(6), 681–691 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, D., Zhang, T., Yuan, S.: Pattern dynamics of a diffusive toxin producing phytoplankton–zooplankton model with three-dimensional patch. Int. J. Bifurcat. Chaos 29, 1930011 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, Y., Li, Y., Zhang, T.: Global bifurcation in a toxin producing phytoplankton–zooplankton system with prey-taxis. Nonlinear Anal. Real World Appl. 61, 103326 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yu, X., Yuan, S., Zhang, T.: Survival and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment. Appl. Math. Comput. 347, 249–264 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, L., Chen, F., Chen, L.: Qualitative analysis of a predator–prey model with Holling type II functional response incorporating a constant prey refuge. Nonlinear Anal. Real World Appl. 11, 246–252 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, H., Cai, Y., Fu, S., Wang, W.: Impact of the fear effect in a prey–predator model incorporating a prey refuge. Appl. Math. Comput. 356, 328–337 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xiao, Z., Li, Z., Zhu, Z., Chen, F.: Hopf bifurcation and stability in a Beddington–DeAngelis predator–prey model with stage structure for predator and time delay incorporating prey refuge. Open Math. 17, 141–159 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wei, F., Fu, Q.: Hopf bifurcation and stability for predator–prey systems with Beddington–DeAngelis type functional response and stage structure for prey incorporating refuge. Appl. Math. Model. 40(1), 126–134 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen, J., Zhang, T., Zhou, Y.: Dynamics of a risk-averse newsvendor model with continuous-time delay in supply chain financing. Math. Comput. Simul. 169, 133–148 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiao, Z., Xie, X., Xue, Y.: Stability and bifurcation in a Holling type II predator–prey model with Allee effect and time delay. Adv. Differ. Equ. 2018, 288 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Anacleto, M., Vidal, C.: Dynamics of a delayed predator–prey model with Allee effect and Holling type II functional response. Math. Methods Appl. Sci. 43(9), 5708–5728 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, Z., He, M., Li, Z., Chen, F.: Stability and bifurcation in a logistic model with Allee effect and feedback control. Int. J. Bifurcat. Chaos 30, 2050231 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lai, L., Zhu, Z., Chen, F.: Stability and bifurcation in a predator–prey model with the additive Allee effect and the fear effect. Mathematics 8, 1280 (2020)

    Article  Google Scholar 

  27. Guan, X., Chen, F.: Dynamical analysis of a two species amensalism model with Beddington–DeAngelis functional response and Allee effect on the second species. Nonlinear Anal. Real World Appl. 48, 71–93 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wei, Z., Xia, Y., Zhang, T.: Stability and bifurcation analysis of an amensalism model with weak Allee effect. Qual. Theory Dyn. Syst. 19, 23 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wei, Z., Xia, Y., Zhang, T.: Stability and bifurcation analysis of a commensal model with additive Allee effect and nonlinear growth rate. Int. J. Bifurcat. Chaos 31, 2150204 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, X., Zannette, L., Zou, X.: Modelling the fear effect in predator–prey interactions. J. Math. Biol. 73(5), 1179–1204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sasmal, S.K.: Population dynamics with multiple Allee effects induced by fear factors—a mathematical study on prey–predator ineractions. Appl. Math. Model. 64, 1–14 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Huang, Y., Zhu, Z., Li, Z.: Modeling the Allee effect and fear effect in predator–prey system incorporating a prey refuge. Adv. Differ. Equ. 2020, 321 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Song, Y., Yin, T., Shu, H.: Dynamics of a ratio-dependent stage-structured predator–prey model with delay. Math. Meth. Appl. Sci. 40(18), 6451–6467 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equation. Science Press, Beijing (1992).. (in Chinese)

    Google Scholar 

  35. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, New York (1993)

    MATH  Google Scholar 

  36. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  37. Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. J. Math. Anal. Appl. 301, 1–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Song, Y., Jiang, H., Liu, Q., Yuan, Y.: Spatiotemporal dynamics of the diffusive Mussel–Algae model near Turing–Hopf bifurcation. SIAM J. Appl. Dyn. Syst. 16(4), 2030–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yi, F., Wei, J., Shi, J.: Diffusion-driven instability and bifurcation in the Lengyel–Epstein system. Nonlinear Anal. Real World Appl. 9(3), 1038–1051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kao, Y., Li, H.: Asymptotical multistability and locally S-asymptotical \(\omega \)-periodicity for the nonautonomous fractional-order neural networks with impulses. Sci. China Inform. Sci. 64(1), 175–187 (2021)

    Article  Google Scholar 

  41. Li, H., Kao, Y., Bao, H., Chen, Y.: Uniform stability of complex-valued neural networks of fractional-order with linear impulses and fixed time delays. IEEE Trans. Neural Netw. Learn. Syst. (2021). https://doi.org/10.1109/TNNLS.2021.3070136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonghui Xia.

Ethics declarations

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The research was supported by Fujian Provincial Middle and Young Teachers Education and Research Project (JAT201377), the National Natural Science Foundation of China under Grant (Nos. 11931016, 11671176), start-up fund of Huaqiao University (Z16J0039).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Xia, Y. & Zhang, T. Dynamic Analysis of Multi-factor Influence on a Holling Type II Predator–Prey Model. Qual. Theory Dyn. Syst. 21, 124 (2022). https://doi.org/10.1007/s12346-022-00653-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00653-3

Keywords

Mathematics Subject Classification

Navigation