Skip to main content
Log in

Existence Results and Ulam–Hyers Stability for a Fully Coupled System of Nonlinear Sequential Hilfer Fractional Differential Equations and Integro-Multistrip-Multipoint Boundary Conditions

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate the existence of solutions for a new coupled system of sequential Hilfer fractional differential equations equipped with coupled integro-multistrip-multipoint boundary conditions. We make use of the incomplete gamma function to evaluate the integrals involved in the solution of the problem. The uniqueness result for the given problem is obtained by the Banach contraction mapping principle, while the existence results are established with the aid of Krasnosel’skiĭ’s fixed point theorem and Leray–Schauder nonlinear alternative under different assumptions. We also discuss the Ulam–Hyers stability for the problem at hand. Numerical examples are constructed for the illustration of the abstract results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Jung, S.M.: Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor (2001)

    MATH  Google Scholar 

  2. Lungu, N., Ciplea, S.A.: Ulam-Hyers stability of Black-Scholes equation. Stud. Univ. Babes-Bolyai Math. 61, 467–472 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Chalishajar, D., Kumar, A.: Existence, uniqueness and Ulam’s stability of solutions for a coupled system of fractional differential equations with integral boundary conditions. Mathematics 6(6), 96 (2018)

    MATH  Google Scholar 

  4. Sousa, J.V. da C., Capelas de Oliveira, E.: Ulam–Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 81, 50–56 (2018)

  5. Capelas de Oliveira, E., Sousa, J.V. da C.: Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 73, Paper No. 111, p. 16 (2018)

  6. Sousa, J.V. da C., J., Capelas de Oliveira, E.: On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the \(\psi \)-Hilfer operator, J. Fixed Point Theory Appl. 20 (2018), Paper No. 96, 21 pp

  7. Luo, D., Shah, K., Luo, Z.: On the novel Ulam–Hyers stability for a class of nonlinear \(\psi \)-Hilfer fractional differential equation with time-varying delays. Mediterr. J. Math. 16, Paper No. 112, p. 15 (2019)

  8. Luo, D., Luo, Z.: Existence and Hyers–Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses. Math. Slovaca 70, 1231–1248 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Luo, D., Abdeljawad, T., Luo, Z.: Ulam-Hyers stability results for a novel nonlinear nabla Caputo fractional variable-order difference system. Turkish J. Math. 45, 456–470 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Wang, X., Luo, D., Zhu, Q.: Ulam-Hyers stability of Caputo type fuzzy fractional differential equations with time-delays. Chaos Solitons Fractals 156, Paper No. 111822, p. 7 (2022)

  11. Yang, M., Alsaedi, A., Ahmed, A., Ahmad, B., Zhou, Y.: Attractivity for Hilfer fractional stochastic evolution equations. Adv. Difference Equ. Paper No. 130, p. 22 (2020)

  12. Abdo, M.S., Thabet, S.T.M., Ahmad, B.: The existence and Ulam–Hyers stability results for \(\psi \)-Hilfer fractional integrodifferential equations. J. Pseudo-Differ. Oper. Appl. 11, 1757–1780 (2020)

    MathSciNet  MATH  Google Scholar 

  13. Mainardi, F.: Fractional calculus: Some Basic Problems in Continuum and Statistical Mechanics, Fractals and fractional calculus in continuum mechanics, 291–348. Springer-Verlag, Wien (1997)

    MATH  Google Scholar 

  14. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  15. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V, Amsterdam (2006)

    Google Scholar 

  16. Ahmad, B., Alsaedi, A., Ntouyas, S.K., Tariboon, J.: Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities. Springer, Cham, Switzerland (2017)

    MATH  Google Scholar 

  17. Chatterjee, A.N., Ahmad, B.: A fractional-order differential equation model of COVID-19 infection of epithelial cells. Chaos Solitons Fractals 147, Paper No. 110952, p 6 (2021)

  18. Zhou, Y., Ahmad, B., Alsaedi, A.: Theory of Fractional Evolution Equations. De Gruyter, Berlin/Boston (2022)

    MATH  Google Scholar 

  19. Ahmad, B., Henderson, J., Luca, R.: Boundary Value Problems for Fractional Differential Equations and Systems. World Scientific Publishing Co Pte. Ltd., Hackensack, NJ (2021)

    MATH  Google Scholar 

  20. Ahmad, B., Ntouyas, S.K.: Nonlocal Nonlinear Fractional-Order Boundary Value Problems. World Scientific Publishing Co Pte. Ltd., Hackensack, NJ (2021)

    MATH  Google Scholar 

  21. Abbas, S., Benchohra, M., Lazreg, J.-E., Zhou, Y.: A survey on Hadamard and Hilfer fractional differential equations: analysis and stability. Chaos Solitons Fractals 102, 47–71 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Asawasamrit, S., Kijjathanakorn, A., Ntouyas, S.K., Tariboon, J.: Nonlocal boundary value problems for Hilfer fractional differential equations. Bull. Korean Math. Soc. 55, 1639–1657 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Abbas, M.I.: On a Hilfer fractional differential equation with nonlocal Erdelyi–Kober fractional integral boundary conditions. Filomat 34, 3003–3014 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Wongcharoen, A., Ntouyas, S.K., Tariboon, J.: On coupled system for Hilfer fractional differential equations with nonlocal integral boundary conditions. J. Math. Article ID 2875152, p. 12 (2020)

  25. Sudsutad, W., Ntouyas, S.K., Thaiprayoon, Ch.: Nonlocal coupled system for \(\psi \)-Hilfer fractional order Langevin equations. AIMS Math. 9, 9731–9756 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Elsayed, E.M., Harikrishnan, S., Kanagarajan, K.: On the existence and stability of boundary value problem for differential equation with Hilfer–Katugampola fractional derivative. Acta Math. Sci. Ser. B (Engl. Ed.) 39, 1568–1578 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Ahmad, B., Ntouyas, S.K.: Hilfer-Hadamard fractional boundary value problems with nonlocal mixed boundary conditions. Fractal Fract. 5(4), 195 (2021)

    Google Scholar 

  28. Sousa, J.V. da C., J., Capelas de Oliveira, E.: On the \(\psi \)-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 60, 72–91 (2018)

  29. Sousa, J.V. da C., Kucche, K. D., Capelas de Oliveira, E.: Stability of \(\psi \)-Hilfer impulsive fractional differential equations. Appl. Math. Lett. 88, 73–80 (2019)

  30. Almalahi, M.A., Bazighifan, O., Panchal, S.K., Askar, S.S., Oros, G.I.: Analytical study of two nonlinear coupled hybrid systems involving generalized Hilfer fractional operators. Fractal Fract. 5, 178 (2021)

    Google Scholar 

  31. Almalahi, M.A., Panchal, S.K.: Some properties of implicit impulsive coupled system via \(\varphi \)-Hilfer fractional operator. Bound. Value Probl. Paper No. 67, p. 22 (2021)

  32. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993)

    MATH  Google Scholar 

  33. Almeida, R., Agarwal, R.P., Hristova, S., O’Regan, D.: Stability of gene regulatory networks modeled by generalized proportional Caputo fractional differential equations. Entropy 24, Paper No. 372 (2022)

  34. Kleiner, T., Hilfer, R.: Sequential generalized Riemann–Liouville derivatives based on distributional convolution. Fract. Calc. Appl. Anal. 25, 267–298 (2022)

    MathSciNet  Google Scholar 

  35. Klimek, M.: Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul. 16, 4689–4697 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Ahmad, B., Ntouyas, S.K.: Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615–622 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Ye, H., Huang, R.: On the nonlinear fractional differential equations with Caputo sequential fractional derivative. Adv. Math. Phys. Art. ID 174156, p. 9 (2015)

  38. Promsakon, C., Phuangthong, N., Ntouyas, S.K., Tariboon, J.: Nonlinear sequential Riemann–Liouville and Caputo fractional differential equations with generalized fractional integral conditions. Adv. Difference Equ. Paper No. 385, p. 17 (2018)

  39. Nuchpong, C., Ntouyas, S.K., Samadi, A., Tariboon, J.: Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann–Stieltjes integral multi-strip boundary conditions. Adv. Difference Equ. Paper No. 268, p. 19 (2021)

  40. Nawapol, P., Ntouyas, S.K., Tariboon, J., Nonlaopon, K.: Nonlocal sequential boundary value problems for Hilfer type fractional integro-differential equations and inclusions. Mathematics 9(6), 615 (2021)

    Google Scholar 

  41. Almalahi, M.A., Abdo, M.S., Panchal, S.K.: Existence and Ulam-Hyers stability results of a coupled system of \(\psi \)-Hilfer sequential fractional differential equations. Results Appl. Math. 10, Paper No. 100142, p. 15 (2021)

  42. Wongcharoen, A., Ntouyas, S.K., Wongsantisuk, P., Tariboon, J.: Existence results for a nonlocal coupled system of sequential fractional differential equations involving \(\psi \)-Hilfer fractional derivatives. Adv. Math. Phys. Art. ID 5554619, p 9 (2021)

  43. Nuchpong, C., Ntouyas, S.K., Samadi, A., Tariboon, J.: Boundary value problems for Hilfer type sequential fractional differential equations and inclusions involving Riemann–Stieltjes integral multi-strip boundary conditions. Adv. Difference Equ. Paper No. 268, p. 19 (2021)

  44. Alsaedi, A., Ahmad, B., Aljoudi, S., Ntouyas, S.K.: A study of a fully coupled two-parameter system of sequential fractional integro-differential equations with nonlocal integro-multipoint boundary conditions. Acta Math. Sci. Ser. B (Engl. Ed.) 39, 927–944 (2019)

    MathSciNet  MATH  Google Scholar 

  45. Alruwaily, Y., Ahmad, B., Ntouyas, S.K., Alzaidi, A.S.M.: Existence results for coupled nonlinear sequential fractional differential equations with coupled Riemann–Stieltjes integro-multipoint boundary conditions. Fractal Fract. 6(2), 123 (2022)

    Google Scholar 

  46. Bulavatsky, V.M.: Mathematical modeling of fractional differential filtration dynamics based on models with Hilfer–Prabhakar derivative. Cybern. Syst. Anal. 53, 204–216 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Bulavatsky, V.M.: Mathematical models and problems of fractional-differential dynamics of some relaxation filtration processes, Cybern. Syst. Analysis 54, 727–736 (2018)

    MATH  Google Scholar 

  48. Harikrishnan, S., Kanagarajan, K., Elsayed, E.M.: Existence and stability results for Langevin equations with Hilfer fractional derivative. Res. Fixed Point Theory Appl. 2018, 20183 (2018)

    MATH  Google Scholar 

  49. Wongchareon, A., Ahmad, B., Ntouyas, S.K., Tariboon, J.: Three-point boundary value problem for the Langevin equation with the Hilfer fractional derivative. Adv. Math. Phys. Article ID 9606428, p. 11 (2020)

  50. Ali, I., Malik, N.: Hilfer fractional advection-diffusion equations with power-law initial condition; a numerical study using variational iteration method. Comput. Math. Appl. 68, 1161–1179 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Hilfer, R.: Experimental evidence for fractional time evolution in glass forming materials. Chem. Phys. 284, 399–408 (2002)

    Google Scholar 

  52. Garra, R., Gorenflo, R., Polito, F., Tomovski, Z.: Hilfer-Prabhakar derivatives and some applications. Appl. Math. Comput. 242, 576–589 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Hilfer, R.: Fractional Time Evolution. Applications of Fractional Calculus in Physics, pp. 87–130. World Scientific Publishing, River Edge NJ (2000)

    MATH  Google Scholar 

  54. Andreu-Vaillo, F., Mazon, J. M., Rossi, J. D., Toledo-Melero, J. J.: Nonlocal Diffusion Problems. Mathematical Surveys and Monographs, vol. 165. American Mathematical Society, Providence, RI; Real Sociedad Matematica Espanola, Madrid, (2010)

  55. Alotta, G., Di Paola, M., Pinnola, F.P., Zingales, M.: A fractional nonlocal approach to nonlinear blood flow in small-lumen arterial vessels. Meccanica 55, 891–906 (2020)

    MathSciNet  Google Scholar 

  56. Ciegis, R., Bugajev, A.: Numerical approximation of one model of bacterial self-organization. Nonlinear Anal. Model. Control 17, 253–270 (2012)

    MathSciNet  MATH  Google Scholar 

  57. Hilfer, R., Luchko, Y., Tomovski, Z.: Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives. Frac. Calc. Appl. Anal. 12, 299–318 (2009)

    MathSciNet  MATH  Google Scholar 

  58. Bell, W.W.: Special Functions for Scientists and Engineers. Dover Publications Inc, Mineola, NY (2004)

    MATH  Google Scholar 

  59. Granas, A., Dugundji, J.: Fixed Point Theory. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

  60. Krasnosel’skiĭ, M.A.: Two remarks on the method of successive approximations. Uspekhi Mat. Nauk 10, 123–127 (1955)

    MathSciNet  Google Scholar 

  61. Rus, I.A.: Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 26, 103–107 (2010)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this project, under grant no. (KEP-PhD: 35-130-1443). The authors thank the referees for their useful remarks that led to the improvement of the original manuscript.

Funding

The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia has funded this project, under grant no. (KEP-PhD: 35-130-1443).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RA, BA, Methodology: [RA, AA, AA, BA, Formal analysis and investigation: RA, AA, AA, BA, Writing - original draft preparation: RA, AA, AA, BA; Writing - review and editing: RA, AA, AA, BA, Funding acquisition: AA.

Corresponding author

Correspondence to Bashir Ahmad.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, R.P., Assolami, A., Alsaedi, A. et al. Existence Results and Ulam–Hyers Stability for a Fully Coupled System of Nonlinear Sequential Hilfer Fractional Differential Equations and Integro-Multistrip-Multipoint Boundary Conditions. Qual. Theory Dyn. Syst. 21, 125 (2022). https://doi.org/10.1007/s12346-022-00650-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00650-6

Keywords

Mathematics Subject Classification

Navigation