Skip to main content
Log in

Some Results on Backward Stochastic Differential Equations of Fractional Order

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this article, we deal with fractional stochastic differential equations, so-called Caputo type fractional backward stochastic differential equations (Caputo fBSDEs, for short), and study the well-posedness of an adapted solution to Caputo fBSDEs of order \(\alpha \in (\frac{1}{2},1)\) whose coefficients satisfy a Lipschitz condition. A novelty of the article is that we introduce a new weighted norm in the square integrable measurable function space that is useful for proving a fundamental lemma and its well-posedness. For this class of systems, we then show the coincidence between the notion of stochastic Volterra integral equation and the mild solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data will be made available on reasonable request.

References

  1. Baghani, O.: On fractional Langevin equation involving two fractional orders. Commun. Nonlinear Sci. Numer. Simulat. 42, 675–681 (2017). https://doi.org/10.1016/j.cnsns.2016.05.023

    Article  MathSciNet  MATH  Google Scholar 

  2. Bensoussan, A.: Lectures on stochastic control. In: Mittler, S.K., Moro, A. (eds.) Nonlinear filtering and stochastic control, pp. 1–62. Lecture Notes in Mathematics, 972 (1982)

    Google Scholar 

  3. Bismut, J.M.: Theorie probabiliste du controle des diffusions. Mem. Amer. Math. Soc. 176, 1–30 (1973)

    Google Scholar 

  4. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  5. Dauer, J.P., Mahmudov, N.I., Matar, M.M.: Approximate controllability of backward stochastic evolution equations in Hilbert spaces. J. Math. Anal. Appl. 323(1), 42–56 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler functions. Springer-Verlag, Berlin, Related Topics and Applications (2014)

    MATH  Google Scholar 

  7. Hu, Y., Peng, S.: Adapted solutions of a backward semilinear stochastic evolution equation. Stochastic Anal. Appl. 9(4), 445–459 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Itô, K.: Stochastic differential equations. Mem. Amer. Math. Soc. 4, 1–51 (1951)

    Google Scholar 

  9. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier Sceince B.V. 1, 1 (2006)

  10. Lin, J.: Adapted solution of a backward stochastic nonlinear Volterra integral equation. Stochastic Anal. Appl. 20(1), 165–183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mahmudov, N.I., McKibben, M.A.: On backward stochastic evolution equations in Hilbert spaces and optimal control, Nonlinear. Analysis 67, 1260–1274 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Mao, X.: Adapted solutions of backward stochastic differential equations with non-Lipschitz coefficients. Stoch. Process. Appl. 58, 281–292 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oksendal, B.: Stochastic differential equations: an introduction with applications. Springer-Verlag, Heidelberg (2000)

    MATH  Google Scholar 

  14. Oldham, K.B., Spanier, J.: The fractional calculus. Academic Press, San Diego (1974)

    MATH  Google Scholar 

  15. Pardoux, E., Peng, S.: Adapted solution of a backward stochastic differential equation. Systems Control Lett. 14, 55–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pardoux, E., Rascanu, A.: Backward stochastic variational inequalities. Stoch. Stoch. Rep. 67(3–4), 159–167 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Peng, S.: Backward stochastic differential equations and applications to optimal control. Appl. Math. Optim. 27, 125–144 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Peng, S.: A generalized dynamic programming principle and Hamilton-Jacobi-Bellman equation. Stochastics Stochastics Rep. 38, 119–134 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. Peng, S.: Probabilistic interpletation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 32, 61–74 (1991)

    MATH  Google Scholar 

  20. Rong, S.: On solutions of backward stochastic differential equations with jumps and applications. Stoch. Process. Appl. 66, 209–236 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rong, S.: On solutions of backward stochastic differential equations with jumps and with non-Lipschitzian coefficients in Hilbert spaces and stochastic control. Statist. Probab. Lett. 60(3), 279–288 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, New York (1993)

    MATH  Google Scholar 

  23. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: theory and applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  24. Shi, Y., Wang, T.: Solvability of general backward stochastic Volterra integral Equations. J. Korean Math. Soc. 49(6), 1301–1321 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shi, Y., Wen, J., Xiong, J.: Backward doubly stochastic Volterra integral equations and their applications. J. Diffe. Equ. 269, 6492–6528 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tang, S., Li, X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control. Optim. 32, 1447–1475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tessitore, G.: Existence, uniqueness, and space regularity of the adapted solutions of a backward SPDE. Stochastic Anal. Appl. 14(4), 461–486 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, T., Yong, J.: Backward stochastic Volterra integral equations-Representation of adapted solutions. Stoch. Process. Appl. 129, 4926–4964 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Yong, J.: Well-posedness and regularity of backward stochastic Volterra integral equations. Probab. Theory Related Fields 142, 21–77 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yong, J.: Backward stochastic Volterra integral equations and some related problems. Stoch. Process. Appl. 116, 779–795 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazim I. Mahmudov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmudov, N.I., Ahmadova, A. Some Results on Backward Stochastic Differential Equations of Fractional Order. Qual. Theory Dyn. Syst. 21, 129 (2022). https://doi.org/10.1007/s12346-022-00657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00657-z

Keywords

Navigation