Skip to main content
Log in

Dynamics of Travelling Waves to KdV–Burgers–Kuramoto Equation with Marangoni Effect Perturbation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper aims to establish the existence of travelling waves for a generalized KdV–Burgers–Kuramoto equation via utilising geometric singular perturbation theory. Firstly, we explore the existence results of orbits for the equation without delay and perturbation by employing Argument Principle. Secondly, the existence of travelling waves for the equation with two types of special delay convolution kernels are proved with the aid of combining the geometric singular perturbation theory, invariant manifold theory and Fredholm orthogonality theorem. Finally, asymptotic behaviors of traveling waves are given with the method of the asymptotic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alimirzaluo, E., Nadjafikhah, M.: Some exact solutions of KdV–Burgers–Kuramoto equation. J. Phys. Commun. 3(3), 035025 (2019)

    Article  Google Scholar 

  2. Benney, D.J.: Long waves on liquid films. J. Math. Phys. 45, 150–155 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  3. Britton, N.F.: Aggregation and the competitive exclusion principle. J. Theoret. Biol. 136, 57–66 (1989)

    Article  MathSciNet  Google Scholar 

  4. Britton, N.F.: Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math. 50, 1663–1688 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cerpa, E., Montoya, C., Zhang, B.: Local exact controllability to the trajectories of the Korteweg-de Vries–Burgers equation on a bounded domain with mixed boundary conditions. J. Differ. Equ. 268(9), 4945–4972 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, C., Chen, Y., Hong, J.M., et al.: Existence and instability of traveling pulses of Keller–Segel system with nonlinear chemical gradients and small diffusions. Nonlinearity 32, 143–167 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, S., Du, Z., Liu, J., et al.: The dynamic properties of a generalized Kawahara equation with Kuramoto–Sivashinsky perturbation. Discrete Contin. Dyn. Syst. Ser. B 27(3), 1471–1496 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, Z., Li, J.: Geometric singular perturbation analysis to Camassa–Holm Kuramoto–Sivashinsky equation. J. Differ. Equ. 306, 418–438 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach. J. Funct. Anal. 275, 988–1007 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Du, Z., Lin, X., Yu, S.: Solitary wave and periodic wave for a generalized \((2+1)\)-dimensional Nizhnik–Novikov–Veselov equation with weak backward diffusion term (in Chinese). Sci. Sin. Math. 52, 133–154 (2022)

    Article  Google Scholar 

  11. Du, Z., Liu, J., Ren, Y.: Traveling pulse solutions of a generalized Keller–Segel system with small cell diffusion via a geometric approach. J. Differ. Equ. 270, 1019–1042 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  12. Du, Z., Qiao, Q.: The dynamics of traveling waves for a nonlinear Belousov–Zhabotinskii system. J. Differ. Equ. 269, 7214–7230 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Escauriaza, L., Kenig, C.E., Ponce, G., et al.: On uniqueness properties of solutions of the \(k\)-generalized KdV equations. J. Funct. Anal. 244, 504–535 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, Z., Meng, Q.: Burgers–Korteweg-de Vries equation and its traveling solitary waves. Sci. China Ser. A 50, 412–422 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feudel, F., Steudel, H.: Nonexistence of prolongation structure for the Korteweg-de Vries–Burgers equation. Phys. Lett. A 107, 5–8 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Garcia-Ybarra, P.L., Castillo, J.L., Velarde, M.G.: Bénard–Marangoni convection with a deformable interface and poorly conducting boundaries. Phys. Fluids 30, 2655–2661 (1987)

    Article  MATH  Google Scholar 

  18. Geyera, A., Villadelpratb, J.: On the wave length of smooth periodic traveling waves of the Camassa-Holm equation. J. Differ. Equ. 259, 2317–2332 (2015)

    Article  MathSciNet  Google Scholar 

  19. Guo, L., Zhao, Y.: Existence of periodic waves for a perturbed quintic BBM equation. Discrete Contin. Dyn. Syst. 40, 4689–4703 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hyman, J.M., Nicolaenko, B.: The Kuramoto-Sivashinsky equation: a bridge between PDEs and dynamical systems. Phys. D 18, 113–126 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Johnsona, E.R., Pelinovsky, D.E.: Orbital stability of periodic waves in the class of reduced Ostrovsky equations. J. Differ. Equ. 261, 3268–3304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems. Lecture Notes in Mathematics, vol. 1609. Springer (1995)

  23. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Commun. Pure Appl. Math 46, 527–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  24. Komornik, V., Pignotti, C.: Well-posedness and exponential decay estimates for a Korteweg-de Vries–Burgers equation with time-delay. Nonlinear Anal. 191, 111646 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kuramoto, Y., Tsuzuki, T.: Persistent propagation of concentration waves in dissipative media far from thermal equilibrium. Prog. Theor. Phys. 55, 356–369 (1976)

    Article  Google Scholar 

  26. Liu, J., Guan, J., Feng, Z.: Hopf bifurcation analysis of KdV–Burgers–Kuramoto chaotic system with distributed delay feedback. Int. J. Bifur. Chaos 29(1), 1950011-1-13 (2019)

  27. Mansour, M.B.A.: Traveling waves for a dissipative modified KdV equation. J. Egypt. Math. Soc. 20, 134–138 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ogawa, T.: Travelling wave solutions to a perturbed Korteweg-de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sayed, S.M., Elhamahmy, O.O., Gharib, G.M.: Travelling wave solutions for the KdV–Burgers–Kuramoto and nonlinear Schr\(\ddot{\text{ o }}\)dinger equations which describe pseudospherical surfaces. J. Appl. Math. 2008, 1–10 (2008)

    Article  MATH  Google Scholar 

  30. Shargatov, V.A., Chugainova, A.P.: Stability analysis of traveling wave solutions of a generalized Korteweg-de Vries–Burgers equation with variable dissipation parameter. J. Comput. Appl. Math. 397, 113654 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, J., Zhang, X.: Travelling pulses in a coupled FitzHugh–Nagumo equation. Physica D 418, 132848 (2021)

    Article  MATH  Google Scholar 

  32. Sivashinsky, G.I.: Large cells in nonlinear Marangoni convection. Phys. D 4, 227–235 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, X., Yu, P.: Periodic traveling waves in a generalized BBM equation with weak backward diffusion and dissipation. Discrete Contin. Dyn. Syst. 24, 965–987 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Tao, T.: Scattering for the quartic generalised Korteweg-de Vries equation. J. Differ. Equ. 232, 623–651 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tchaho, C.T.D., Omanda, H.M., Mbourou, G.N.T., et al.: Multi-form solitary wave solutions of the KdV–Burgers–Kuramoto equation. J. Phys. Commun. 3(10), 105013 (2019)

    Article  Google Scholar 

  36. Velarde, M.G.: Physicochemical Hydrodynamics: Interfacial Phenomena. Plenum, New York (1987)

    Google Scholar 

  37. Wang, G.: Symmetry analysis, analytical solutions and conservation laws of a generalized KdV–Burgers–Kuramoto equation and its fractional version. Fractals 29(4), 2150101–666 (2021)

    Article  MATH  Google Scholar 

  38. Yang, J.: A normal form for Hamiltonian–Hopf bifurcations in nonlinear Schr\(\ddot{\text{ o }}\)dinger equations with general external potentials. SIAM J. Appl. Math. 76, 598–617 (2016)

    Article  MathSciNet  Google Scholar 

  39. Zhou, Y., Liu, Q.: Reduction and bifurcation of traveling waves of the KdV–Burgers–Kuramoto equation. Discrete Contin. Dyn. Syst. Ser. B 21(6), 2057–2071 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the anonymous reviewers for their valuable comments and suggestions for improving the quality of the paper Grant No. 11871251.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengji Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Natural Science Foundation of China (Grant No. 12271220) and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No. KYCX21-2562)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Chen, S. & Du, Z. Dynamics of Travelling Waves to KdV–Burgers–Kuramoto Equation with Marangoni Effect Perturbation. Qual. Theory Dyn. Syst. 21, 132 (2022). https://doi.org/10.1007/s12346-022-00662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00662-2

Keywords

Mathematics Subject Classification

Navigation