Skip to main content
Log in

On Families QSL \(_{\ge 2}\) of Quadratic Systems with Invariant Lines of Total Multiplicity At Least 2

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Let QSL \(_{\ge i}\) be the family of quadratic differential systems with invariant lines of total multiplicity at least i and let QSL \(_{i}\) denote the family of quadratic systems with invariant lines of total multiplicity exactly i. For any polynomial system the line at infinity is invariant. Thus the family \({{\varvec{QS}}}\,\) of all quadratic systems is the same as QSL \(_{\ge 1}\). Our main interest is in the family QSL \(_{\ge 2}\), the largest strict sub-family of \({{\varvec{QS}}}\,\) of systems having invariant lines. Our first goal is to give a brief survey of what we know so far about this family. At the moment we know everything about the family QSL \(_{\ge 4}\) as well as about two important subfamilies of QSL \(_{3}\). Only two other subfamilies of QSL \(_{3}\) remain to be studied. Our second goal is to give necessary and sufficient conditions in terms of invariant polynomials for systems to belong to one of these, namely the family QSL \(^{2p}\) of quadratic systems with two parallel lines real or complex and to give the geometrical classification of this family. Our third goal is to complete a former partial result in the literature and obtain the global result on QSL \(_{\ge 2}\) saying that the Hilbert number for this family is one. This opens the road for attempting to obtain the topological classification of QSL \(_{\ge 2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This paper has no data.

References

  1. Arnold, V.: Les métodes mathématiques de la mécanique classique. (French) Éditions Mir, Moscow (1976)

  2. Artés, J.C., Llibre, J., Schlomiuk, D.: The geometry of quadratic polynomial differential systems with a weak focus and an invariant straight line. Int. J. Bifurc. Chaos Appl. Sci. Eng. 20(11), 3627–3662 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Geometric Configurations of Singularities of Planar Polynomial Differential Systems [A Global Classification in the Quadratic Case]. Birkhäuser/Springer, Cham (2021)

    Book  MATH  Google Scholar 

  4. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Invariant conditions for phase portraits of quadratic systems with complex conjugate invariant lines meeting at a finite point. Rend. Circ. Mat. Palermo. Ser. 2 70, 923–945 (2021). https://doi.org/10.1007/s12215-020-00541-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Global topological configurations of singularities for the whole family of quadratic differential systems. Qual. Theory Dyn. Syst. 19, 51 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Artés, J.C., Mota, M.C., Rezende, A.C.: Quadratic differential systems with a finite saddle-node and an infinite saddle-node (1,1)SN-(A). Int. J. Bifurc. Chaos Appl. Sci. Eng. 31(2), 2150026 (2021)

  7. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields. Rocky Mountain J. Math. 45, 29–113 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baltag, V.A., Vulpe, N.: Total multiplicity of all finite critical points of the polynomial differential system. Differ. Equ. Dyn. Syst. 5, 455–471 (1997)

    MathSciNet  MATH  Google Scholar 

  9. Christopher, C., Llibre, J., Pereira, J.V.: Multiplicity of invariant algebraic curves in polynomial vector fields. (Engl. Summ.) Pacific J. Math. 229(1), 63–117 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coll, B., Llibre, J.: Limit cycles for a quadratic system with an invariant straight line and some evolution of phase portraits. Colloq. Math. Soc. Janos Bolyai 53, 111–123 (1988)

    MathSciNet  Google Scholar 

  11. Coppel, W.A.: Some quadratic systems with at most one limit cycle. In: Kirchgraber, Y., Walther, H.O. (eds.) Dynamics Reported: A Series in Dynamical Systems and Their Applications, vol. 2, pp. 61–88. Wiley, Chichester (1989)

    Chapter  Google Scholar 

  12. Darboux, G.: Mémoire sur les équations différentielles du premier ordre et du premier degré. Bulletin de Sciences Mathématiques, 2me série 2(1), 60–96; 123–144 151-200 (1878)

  13. Dulac, H.: Détermination et integration d’une certaine classe déquations différentielle ayant pour point singulier un centre. Bull. Sci. Math. Ser (2) 32, 230–252 (1908)

    MATH  Google Scholar 

  14. Grace, J.H., Young, A.: The Algebra of Invariants. Stechert, New York (1941)

    MATH  Google Scholar 

  15. Oliveira, R., Schlomiuk, D., Travaglini, A.M.: Geometry and integrability of quadratic systems with invariant hyperbolas. Electron. J. Qual. Theory Differ. Equ. 2021(6), 1–56 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oliveira, R., Schlomiuk, D., Travaglini, D.A.M., Valls, C.: Geometry, integrability and bifurcation diagrams of a family of quadratic differential systems as application of the Darboux theory of integrability. Electron. J. Qual. Theory. Differ. Equ. 2021(45), 1–90 (2021). https://doi.org/10.14232/ejqtde.2021.1.45

    Article  MathSciNet  MATH  Google Scholar 

  17. Olver, P.J.: Classical Invariant Theory, London Mathematical Society Student Texts, vol. 44. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  18. Poincaré, H.: Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré. I. Rend. Circ. Mat. Palermo 5, 161–191 (1891)

    Article  MATH  Google Scholar 

  19. Poincaré, H.: Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré. II. Rend. Circ. Mat. Palermo 11, 193–239 (1897)

    Article  MATH  Google Scholar 

  20. Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of at least five total multiplicity. Qual. Theory Dyn. Syst. 5(1), 135–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schlomiuk, D., Vulpe, N.: Geometry of quadratic differential systems in the neighborhood of infinity. J. Differ. Equ. 215(2), 357–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schlomiuk, D., Vulpe, N.: Planar quadratic differential systems with invariant straight lines of total multiplicity four. Nonlinear Anal. 68(4), 681–715 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity. Rocky Mountain J. Math. 38(6), 2015–2075 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schlomiuk, D., Vulpe, N.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four. Bul. Acad. Ştiinţe Repub. Mold. Mat. 1(56), 27–83 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Schlomiuk, D., Vulpe, N.: The full study of planar quadratic differential systems possessing a line of singularities at infinity. J. Dyn. Differ. Equ. 20(4), 737–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schlomiuk, D., Vulpe, N.: Global classification of the planar Lotka–Volterra differential systems according to their configurations of invariant straight lines. J. Fixed Point Theory Appl. 8(1), 177–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Schlomiuk, D., Vulpe, N.: Global topological classification of Lotka–Volterra quadratic differential systems. Electron. J. Differ. Equ. 2012(64), 69 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Sibirskii, K.S.: Introduction to the Algebraic Theory of Invariants of Differential Equations. Translated from Russian. Nonlinear Science: Theory and Applications. Manchester University Press, Manchester (1988)

  29. Schlomiuk, D., Zhang, X.: Quadratic differential systems with complex conjugate invariant lines meeting at a finite point. J. Differ. Equ. 265(8), 3650–3684 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the two referees for their very valuable work which helped to improve the manuscript. The work of the second and the third authors was partially supported by the grants: NSERC Grants No. RN000355 and RN001102; the third author was partially supported by the Grant No. 21.70105.31 SD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolae Vulpe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bujac, C., Schlomiuk, D. & Vulpe, N. On Families QSL \(_{\ge 2}\) of Quadratic Systems with Invariant Lines of Total Multiplicity At Least 2. Qual. Theory Dyn. Syst. 21, 133 (2022). https://doi.org/10.1007/s12346-022-00659-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00659-x

Keywords

Mathematics Subject Classification

Navigation