Skip to main content
Log in

Ground State Solutions for Generalized Quasilinear Schrödinger Equations with Critical Growth

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we study the following generalized quasilinear Schrödinger equation with critical growth

$$\begin{aligned} -\hbox {div}(g^2(u)\nabla u)+g(u)g^\prime (u)|\nabla u|^2+V(x)u =\lambda f(x,u)+|u|^{\alpha 2^*-2}u, \quad x \in {\mathbb {R}}^N, \end{aligned}$$

where \(\lambda >0\), \(N\ge 3\), \(g: {\mathbb {R}}\rightarrow {\mathbb {R}}^+\) is a \(C^1\) even function, \(g(0)=1\), \(g^\prime (s)\ge 0\) for all \(s\ge 0\), \(g(s)=\beta |s|^{\alpha -1}+O(|s|^{\gamma -1})\) as \(s\rightarrow \infty \) for some constants \(\alpha \in [1,2], \ \beta >0, \ \gamma <\alpha \) and \((\alpha -1)g(s)\ge g^\prime (s)s\) for all \(s\ge 0\). Under some suitable conditions on the potential and nonlinearity, we obtain the existence of ground state solutions for large \(\lambda \) by using dual approach and Nehari manifold method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Brüll, L., Lange, H.: Solitary waves for quasilinear Schrödinger equations. Expo. Math. 4, 279–288 (1986)

    MATH  Google Scholar 

  2. Brandi, H., Manus, C., Mainfry, G., Lehner, T., Bonnaud, G.: Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma. Phys. Fluids B 5, 3539–3550 (1993)

    Article  Google Scholar 

  3. Bass, F.G., Nasanov, N.N.: Nonlinear electromagnetic-spin waves. Phys. Rep. 189, 165–223 (1990)

    Article  Google Scholar 

  4. Bartsch, T., Wang, Z., Willem, M.: The Dirichlet problem for superlinear elliptic equations, In: Handbook of Differential Equations: Stationary Partial Differential Equations, vol. II, pp. 1–55. Elsevier/North-Holland, Amsterdam (2005)

  5. Chen, S.T., Rădulescu, V., Tang, X.H., Zhang, B.L.: Ground state solutions for quasilinear Schrödinger equations with variable potential and superlinear reaction. Rev. Mat. Iberoam. 36, 1549–1570 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Huang, X., Qin, D., Cheng, B.: Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger equations with critical Sobolev exponents. Asymptot. Anal. 1, 1–50 (2019)

    Google Scholar 

  7. Chen, J., Tang, X., Cheng, B.: Non-Nehari manifold method for a class of generalized quasilinear Schrödinger equations. Appl. Math. Lett. 74, 20–26 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, J., Tang, X., Cheng, B.: Ground state sign-changing solutions for a class of generalized quasilinear Schrödinger equations with a Kirchhoff-type perturbation. J. Fixed Point Theory Appl. 19, 3127–3149 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, J., Tang, X., Cheng, B.: Existence and nonexistence of positive solutions for a class of generalized quasilinear Schrödinger equations involving a Kirchhoff-type perturbation with critical Sobolev exponent. J. Math. Phys. 59, 021505 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X., Sudan, R.N.: Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse in underdense plasma. Phys. Rev. Lett. 70, 2082–2085 (1993)

    Article  Google Scholar 

  11. De Bouard, A., Hayashi, N., Saut, J.: Global existence of small solutions to a relativistic nonlinear Schrödinger equation. Commun. Math. Phys. 189, 73–105 (1997)

    Article  MATH  Google Scholar 

  12. Deng, Y., Peng, S., Yan, S.: Positive soliton solutions for generalized quasilinear Schrödinger equations with critical growth. J. Differ. Equ. 258, 115–147 (2015)

    Article  MATH  Google Scholar 

  13. Deng, Y., Peng, S., Yan, S.: Critical exponents and solitary wave solutions for generalized quasilinear Schrödinger equations. J. Differ. Equ. 260, 1228–1262 (2016)

    Article  MATH  Google Scholar 

  14. Hasse, R.W.: A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z. Phys. B 37, 83–87 (1980)

    Article  MathSciNet  Google Scholar 

  15. Jeanjean, L.: On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem set on \({\mathbb{R} }^N\). Proc. R. Soc. Edinburgh 129, 787–809 (1999)

    Article  MATH  Google Scholar 

  16. Kosevich, A.M., Ivanov, B.A., Kovalev, A.S.: Magnetic solitons. Phys. Rep. 194, 117–238 (1990)

    Article  Google Scholar 

  17. Kurihara, S.: Large-amplitude quasi-solitons in superfluid films. J. Phys. Soc. Jpn. 50, 3262–3267 (1981)

    Article  Google Scholar 

  18. Li, G.: Positive solution for quasilinear Schrödinger equations with a parameter. Commun. Pure Appl. Anal. 14, 1803–1816 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, S., Li, S.: Infinitely many solutions for a superlinear elliptic equation. Acta Math. Sin. (Chin. Ser.) 46, 625–630 (2003). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  20. Lange, H., Poppenberg, M., Teismann, H.: Nash–Moser methods for the solution of quasilinear Schrödinger equations. Commun. Partial Differ. Equ. 24, 1399–1418 (1999)

    Article  MATH  Google Scholar 

  21. Laedke, E., Spatschek, K., Stenflo, L.: Evolution theorem for a class of perturbed envelope soliton solutions. J. Math. Phys. 24, 2764–2769 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, J., Wang, Z.: Soliton solutions for quasilinear Schrödinger equations, I. Proc. Am. Math. Soc. 131, 441–448 (2002)

    Article  MATH  Google Scholar 

  23. Liu, J., Wang, Y., Wang, Z.: Solutions for quasilinear Schrödinger equations via the Nehari Method. Commun. Partial Differ. Equ. 29, 879–901 (2004)

    Article  MATH  Google Scholar 

  24. Li, Q., Wu, X.: Existence, multiplicity, and concentration of solutions for generalized quasilinear Schrödinger equations with critical growth. J. Math. Phys. 58, 041501 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, Q., Wu, X.: Multiple solutions for generalized quasilinear Schrödinger equations. Math. Methods Appl. Sci. 40, 1359–1366 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, Q., Teng, K., Wu, X.: Ground state solutions and geometrically distinct solutions for generalized quasilinear Schrödinger equation. Math. Methods Appl. Sci. 40, 2165–2176 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Makhankov, V.G., Fedyanin, V.K.: Nonlinear effects in quasi-one-dimensional models and condensed matter theory. Phys. Rep. 104, 1–86 (1984)

    Article  MathSciNet  Google Scholar 

  28. Poppenberg, M., Schmitt, K., Wang, Z.: On the existence of soliton solutons to quasilinear Schrödinger equations. Calc. Var. Partial Differ. Equ. 14, 329–344 (2002)

    Article  MATH  Google Scholar 

  29. Quispel, G.R.W., Capel, H.W.: Equation of motion for the Heisenberg spin chain. Physica A 110, 41–80 (1982)

    Article  MathSciNet  Google Scholar 

  30. Ritchie, B.: Relativistic self-focusing and channel formation in laser–plasma interaction. Phys. Rev. E 50, 687–689 (1994)

    Article  Google Scholar 

  31. Shi, H., Chen, H.: Generalized quasilinear asymptotically periodic Schrödinger equations with critical growth. Comput. Math. Appl. 71, 849–858 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Silva, E.A.B., Vieira, G.F.: Quasilinear asymptotically periodic Schrödinger equations with subcritical growth. Nonlinear Anal. 72, 2935–2949 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

    MATH  Google Scholar 

  34. Shen, Y., Wang, Y.: Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal. 80, 194–201 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wu, X.: Multiple solutions for quasilinear Schrödinger equations with a parameter. J. Differ. Equ. 256, 2619–2632 (2014)

    Article  MATH  Google Scholar 

  36. Wu, Y., Yao, Y.: Quasilinear Schrödinger equations involving critical exponents in \({\mathbb{R} }^2\). Bull. Iranian Math. Soc. 42, 1387–1401 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, J., Lin, X.Y., Tang, X.H.: Ground state solutions for a quasilinear Schrödinger equation. Mediterr. J. Math. 14, 1–13 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, J., Tang, X.H., Zhang, W.: Infinitely many solutions of quasilinear Schrödinger equation with sign-changing potential. J. Math. Anal. Appl. 420, 1762–1775 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, J., Zhang, W.: Semiclassical states for coupled nonlinear Schrödinger system with competing potentials. J. Geom. Anal. 32, 114 (2022)

    Article  MATH  Google Scholar 

  40. Zhang, W., Yuan, S., Wen, L.: Existence and concentration of ground-states for fractional Choquard equation with indefinite potential. Adv. Nonlinear Anal. 11, 1552–1578 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, W., Zhang, J.: Multiplicity and concentration of positive solutions for fractional unbalanced double-phase problems. J. Geom. Anal. 32(9), 235 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (12261031, 12271152, 12161033), the Yunnan Province Applied Basic Research for General Project (2019FB001), Youth Outstanding-notch Talent Support Program in Yunnan Province and the Project Funds of Xingdian Talent Support Program, the Natural Science Foundation of Hunan Province (2021JJ30189, 2022JJ30200), the Key project of Scientific Research Project of Department of Education of Hunan Province (21A0387), the China Scholarship Council (201908430218) for visiting the University of Craiova (Romania). Jian Zhang would like to thank the China Scholarship Council and the Embassy of the People’s Republic of China in Romania.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhang, J. & Nie, J. Ground State Solutions for Generalized Quasilinear Schrödinger Equations with Critical Growth. Qual. Theory Dyn. Syst. 21, 137 (2022). https://doi.org/10.1007/s12346-022-00667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00667-x

Keywords

Mathematics Subject Classification

Navigation