Skip to main content
Log in

Reflected Forward-Backward Stochastic Differential Equations Driven by G-Brownian Motion with Continuous Monotone Coefficients

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper is devoted to investigating the existence of solution to a class of reflected forward-backward stochastic differential equations driven by G-Brownian motion (G-RFBSDEs). We construct a solution to the equations by monotone convergence argument when the generator of backward equation and the drift of forward equation satisfy the monotonicity and uniformly continuous condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availibility

All data generated or analysed during this study are included in this manuscript.

References

  1. Antonelli, F., Hanmadène, S.: Existence of solutions of backward-forward SDEs with continuous monotone coefficients. Statist. Probab. Lett. 76, 1559–1569 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, X., Lin, Y.: On the existence and uniqueness of solutions to stochastic differential equations driven by \(G\)-Brownian motion with integral-Lipschitz coefficients. Acta. Math. Appl. Sin. Engl. Ser. 30, 589–610 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Denis, L., Hu, M., Peng, S.: Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownain motion paths. Potential Anal. 34, 139–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gao, F.Q.: Pathwise properties and homeomorphic flows for stochastic differential equations driven by \(G\)-Brownian motion. Stochastic Process. Appl. 119, 3356–3382 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hu, Y.: N-person differntial games governed by semilinear stochastic evolution systems. Appl. Math. Optim. 24, 257–271 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hu, M., Ji, S., Peng, S.: On representation theorem of \(G\)-expectationa and paths of \(G\)-Brownian motion. Acta. Math. Appl. Sin. Engl. Ser. 25, 539–546 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu, M., Ji, S., Peng, S., Song, Y.: Backward stochastic differential equation driven by \(G\)-Brownian motion. Stoch. Process. Appl. 124, 759–784 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hu, M., Wang, F., Zheng, G.: Quasi-continuous random variables and processes under the \(G\)-expectation framework. Stoch. Process. Appl. 126, 2367–2387 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, Z., Lepeltier, J., Wu, Z.: Reflected forward-backward differential equations with continuous monotone coefficients. Statist. Probab. Lett. 80, 1569–1576 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Luo, P., Wang, F.: Stochastic differential equations driven by \(G\)-Brownian motion and ordinary differential equations. Stoch. Process. Appl. 124, 3869–3885 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lin, Y.: Stochastic differential equations driven by \(G\)-Brownian motion with reflecting boundary conditions. Electron. J. Probab. 18, 1–23 (2013)

    Article  MathSciNet  Google Scholar 

  12. Li, X., Peng, S.: Stopping times and related Itô’s calculus with \(G\)-Brownian motion. Stoch. Process. Appl. 121, 1492–1508 (2011)

    Article  MATH  Google Scholar 

  13. Li, H., Peng, S., Soumana, H.A.: Reflected solutions of BSDEs driven by \(G\)-Brownian motion. Sci. China Math. 61, 1–26 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, H., Song, Y.: Backward stochastic differential equations driven by \(G\)-Brownian motion with double reflections. J. Theoret. Probab. 34, 1–30 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lepeltier, J., San Martin, J.: Backward stochastic differential equations with continuous coefficients. Statist. Probab. Lett. 34, 425–430 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, S.: Nonlinear expectations and nonlinear Markov chains, Chinese. Ann. Math. 26B, 159–184 (2005)

    MATH  Google Scholar 

  17. Peng, S.: Nonlinear expectations and stochastic calculus under uncertainly. With robust CLT and G-Brownian motion. Probability Theory and Stochastic Modelling, 95. Springer, Berlin (2019). Xiii+212 pp

  18. Peng, S.: \(G\)-expectation, \(G\)-Brownian motion and related stochastic calculus of Itô type, In: Stochastic Analysis and Applications. Abel Symposium, Springer, Berlin, pp. 541-567 (2007)

  19. Peng, S., Song, Y., Zhang, J.: A complete representation theorem for \(G\)-martingales. Stochastics 86, 609–631 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Possamai, D.: Second order backward stochastic differential equations under monotonicity condition. Stoch. Process. Appl. 123, 1521–1545 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ren, Y., Bi, Q., Sakthivel, R.: Stochastic functional differential equation with infinite delay driven by \(G\)-Brownian motion. Math. Meth. Appl. Sci. 36, 1746–1759 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Soner, M., Touzi, N., Zhang, J.: Martingale representation theorem for the \(G\)-expectation. Stoch. Process. Appl. 121, 265–287 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Song, Y.: Some properties on \(G\)-evaluation and its applications to \(G\)-martingale decomposition. Sci. China Math. 54, 287–300 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Song, Y.: Backward stochastic differential equations driven by \(G\)-Brownian motion under a monotonicity condition, Chinese. Ann. Math. 40A, 177–198 (2019)

    MATH  Google Scholar 

  25. Wang, F., Zheng, G.: Backward stochastic differential equations driven by \(G\)-Brownian motion with uniformly continuous generators. J. Theoret. Probab. 34, 660–681 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the referees and the editors for their careful reading and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported in part by the NSFC Grant Nos. 12171084, 11601203, the fundamental Research Funds for the Central Universities No. 2242022R10013, Jiangsu Key Lab for NSLSCS Grant No. 202003, the Jiangsu Center for Collaborative Innovation in Geographical Information Resource and Applications, the Research Foundation of JinLing Institute of Technology Grant No. Jit-b-201836, the Incubation Project of JinLing Institute of Technology Grant No. Jit-fhxm-2021.

Appendix

Appendix

Proof of (3.19) and (3.20)

Applying Itô’s formula to \(|Y_{t}^{1,k}|^{2}\), we have

$$\begin{aligned} |Y_{0}^{1,k}|^{2}+\displaystyle \int _{0}^{T}|Z_{s}^{1,k}|^{2}d\langle B\rangle _{s}&=|\xi |^{2}+2\displaystyle \int _{0}^{T}Y_{s}^{1,k}f_{k}^{1}(s,w,Y_{s}^{1,k},Z_{s}^{1,k})ds\\&\quad -2\displaystyle \int _{0}^{T}Y_{s}^{1,k} Z_{s}^{1,k}dB_{s}+2\displaystyle \int _{0}^{T}Y_{s}^{1,k}dA_{s}^{1,k}. \end{aligned}$$

By Lemma 3.1, (H4) and f is Lipschitz continuous in z, we have

$$\begin{aligned} |f_{k}^{1}(s,w,y,z)|\le & {} |f(s,X_{s}^{0}(w),0,z)|+M(1+|y|)\nonumber \\\le & {} |f(s,0,0,0)|+M(2+|y|+|z|). \end{aligned}$$
(4.1)

Then, for \(2\le \alpha <\beta \), by Lemma 2.2, Lemma 2.1 and Hölder’s inequality, we have

$$\begin{aligned}&\underline{\sigma }^{\alpha }\hat{{\mathbb {E}}}\left[ \left( \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds\right) ^{\frac{\alpha }{2}}\right] \le \hat{{\mathbb {E}}}\left[ \left( \int _{0}^{T}|Z_{s}^{1,k}|^{2}d\langle B\rangle _{s}\right) ^{\frac{\alpha }{2}}\right] \nonumber \\&\quad \le 2^{\frac{3\alpha }{2}-2}\{\hat{{\mathbb {E}}}[|\xi |^{\alpha }] +\hat{{\mathbb {E}}}\left[ |\int _{0}^{T}Y_{s}^{1,k}f_{k}^{1}(s,w,Y_{s}^{1,k},Z_{s}^{1,k})ds|^{\frac{\alpha }{2}}\right] \nonumber \\&\quad +\hat{{\mathbb {E}}}\left[ |\int _{0}^{T}Y_{s}^{1,k}Z_{s}^{1,k}dB_{s}|^{\frac{\alpha }{2}}\right] +\hat{{\mathbb {E}}}\left[ |\int _{0}^{T}Y_{s}^{1,k}dA_{s}^{1,k}|^{\frac{\alpha }{2}}\right] \}\nonumber \\&\quad \le 2^{\frac{3\alpha }{2}-2}\{\hat{{\mathbb {E}}}[|\xi |^{\alpha }] +\hat{{\mathbb {E}}}[\sup _{0\le s\le T}|Y_{s}^{1,k}|^{\frac{\alpha }{2}}\left( \int _{0}^{T}|f(s,0,0,0)| +M(2+|Y_{s}^{1,k}|+|Z_{s}^{1,k}|)ds\right) ^{\frac{\alpha }{2}}]\nonumber \\&\quad +C_{\frac{\alpha }{2}}\overline{\sigma }^{\frac{\alpha }{2}}\hat{{\mathbb {E}}}\left[ \left( \int _{0}^{T}|Y_{s}^{1,k}|^{2}|Z_{s}^{1,k} |^{2}ds\right) ^{\frac{\alpha }{4}}\right] +\hat{{\mathbb {E}}}[\sup _{0\le s\le T}|Y_{s}^{1,k}|^{\frac{\alpha }{2}} |A_{T}^{1,k}|^{\frac{\alpha }{2}}]\}\nonumber \\&\quad \le 2^{\frac{3\alpha }{2}-2}\hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }] +2^{\frac{5\alpha }{2}-4}(\hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }])^{\frac{1}{2}}\nonumber \\&\quad \cdot \{\hat{{\mathbb {E}}}\left[ \left( \int _{0}^{T}|f(s,0,0,0)|ds\right) ^{\alpha }\right] +(2MT)^{\alpha }+(MT)^{\alpha } \hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }]\nonumber \\&\quad +M^{\alpha }T^{\frac{\alpha }{2}}\hat{{\mathbb {E}}}\left[ \left( \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds\right) ^{\frac{\alpha }{2}}\right] \} ^{\frac{1}{2}}+2^{\frac{3\alpha }{2}-2}C_{\frac{\alpha }{2}}\overline{\sigma }^{\frac{\alpha }{2}} (\hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }])^{\frac{1}{2}}\left( \hat{{\mathbb {E}}} \left[ \left( \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds\right) ^{\frac{\alpha }{2}}\right] \right) ^{\frac{1}{2}}\nonumber \\&\quad +2^{\frac{3\alpha }{2}-2}(\hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }])^{\frac{1}{2}} (\hat{{\mathbb {E}}}[|A_{T}^{1,k}|^{\alpha }])^{\frac{1}{2}} \nonumber \\&\quad \le 2^{\frac{3\alpha }{2}-2}\hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }] +2^{\frac{5\alpha }{2}-4}T^{\frac{\alpha -1}{2}}(\hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k} |^{\alpha }])^{\frac{1}{2}}\cdot \left( \hat{{\mathbb {E}}}\left[ \int _{0}^{T}|f(s,0,0,0)|^{\alpha }ds\right] \right) ^{\frac{1}{2}}\nonumber \\&\quad +(2MT)^{\frac{\alpha }{2}}2^{\frac{5\alpha }{2}-4}(\hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }]) ^{\frac{1}{2}}+(MT)^{\frac{\alpha }{2}}2^{\frac{5\alpha }{2}-4}\hat{{\mathbb {E}}}[\sup _{0\le s \le T} |Y_{s}^{1,k}|^{\alpha }]\nonumber \\&\quad +\left( 2^{\frac{3\alpha }{2}-2}C_{\frac{\alpha }{2}}\overline{\sigma }^{\frac{\alpha }{2}}+2^{\frac{5\alpha }{2} -4}M^{\frac{\alpha }{2}}T^{\frac{\alpha }{4}}\right) \left( \hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }]\right) ^{\frac{1}{2}}\left( \hat{{\mathbb {E}}}\left[ \left( \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds\right) ^{\frac{\alpha }{2}}\right] \right) ^{\frac{1}{2}}\nonumber \\&\quad +2^{\frac{3\alpha }{2}-2}(\hat{{\mathbb {E}}}[\sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }])^{\frac{1}{2}} (\hat{{\mathbb {E}}}[|A_{T}^{1,k}|^{\alpha }])^{\frac{1}{2}}. \end{aligned}$$
(4.2)

On the other hand,

$$\begin{aligned} A_{T}^{1,k}= Y_{0}^{1,k}-\xi -\displaystyle \int _{0}^{T}f^{1}_{k}(s,w,Y_{s}^{1,k},Z_{s}^{1,k})ds+\displaystyle \int _{0}^{T}Z_{s}^{1,k}dB_{s}. \end{aligned}$$

By Lemma 2.1, (4.1) and by simple calculation, we get

$$\begin{aligned}&\hat{{\mathbb {E}}}[|A_{T}^{1,k}|^{\alpha }] \le 4^{\alpha -1}\{2\hat{{\mathbb {E}}}\left[ \sup _{0\le t \le T}|Y_{t}^{1,k}|^{\alpha }\right] \nonumber \\&\quad +\hat{{\mathbb {E}}}\left[ |\displaystyle \int _{0}^{T}f^{1}_{k}(s,w,Y_{s}^{1,k},Z_{s}^{1,k})ds|^{\alpha }\right] +\hat{{\mathbb {E}}}[|\displaystyle \int _{0}^{T}Z_{s}^{1,k}dB_{s}|^{\alpha }\}\nonumber \\&\quad \le 2^{2\alpha -1}\hat{{\mathbb {E}}}\left[ \sup _{0\le t \le T}|Y_{t}^{1,k}|^{\alpha }\right] +4^{2\alpha -2}T^{\alpha -1}\hat{{\mathbb {E}}}\left[ \displaystyle \int _{0}^{T}|f(s,0,0,0)|^{\alpha }ds\right] +4^{2\alpha -2}(2MT)^{\alpha }\nonumber \\&\quad +4^{2\alpha -2}(MT)^{\alpha }\hat{{\mathbb {E}}}\left[ \sup _{0\le t\le T}|Y_{t}^{1,k}|^{\alpha }\right] +(4^{2\alpha -2}M^{\alpha }T^{\frac{\alpha }{2}}+4^{\alpha -1}C_{\alpha }\bar{\sigma }^{\alpha }) \hat{{\mathbb {E}}}\left[ \left( \displaystyle \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds\right) ^{\frac{\alpha }{2}}\right] . \end{aligned}$$
(4.3)

Combining (4.2) and (4.3), then there exists a constant \(C'\) independent of k, such that

$$\begin{aligned}&\underline{\sigma }^{\alpha }\hat{{\mathbb {E}}}\left[ \left( \displaystyle \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds\right) ^{\frac{\alpha }{2}}\right] \nonumber \\&\quad \le C'\left\{ \hat{{\mathbb {E}}}\left[ \sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }\right] +\left( \hat{{\mathbb {E}}}\left[ \sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }\right] \right) ^{\frac{1}{2}}+\hat{{\mathbb {E}}}\left[ \displaystyle \int _{0}^{T}|f(s,0,0,0)|^{\alpha }ds\right] \right\} \nonumber \\&\quad +C''\left( \hat{{\mathbb {E}}}\left[ \sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }\right] \right) ^{\frac{1}{2}}(\hat{{\mathbb {E}}} \left[ \left( \displaystyle \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds)^{\frac{\alpha }{2}}\right] \right) ^{\frac{1}{2}} \nonumber \\&\quad \le C'\{\hat{{\mathbb {E}}}[\sup _{0\le t \le T}|Y_{t}^{1,k}|^{\alpha }]+\left( \hat{{\mathbb {E}}}\left[ \sup _{0\le t \le T}|Y_{t}^{1,k}|^{\alpha }\right] \right) ^{\frac{1}{2}}+\hat{{\mathbb {E}}}\left[ \displaystyle \int _{0}^{T}|f(s,0,0,0)|^{\alpha }ds\right] \}\nonumber \\&\quad +\frac{(C'')^{2}}{4\varepsilon }\hat{{\mathbb {E}}}\left[ \sup _{0\le t \le T}|Y_{t}^{1,k}|^{\alpha }\right] +\varepsilon \hat{{\mathbb {E}}}\left[ \left( \displaystyle \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds\right) ^{\frac{\alpha }{2}}\right] \end{aligned}$$
(4.4)

where \(C''=2^{\frac{3\alpha }{2}-2}C_{\frac{\alpha }{2}}\bar{\sigma }^{\frac{\alpha }{2}}+2^{\frac{5\alpha }{2}-4} (2^{\alpha }+1)M^{\frac{\alpha }{2}}T^{\frac{\alpha }{4}}+2^{\frac{5\alpha }{2}-3}C_{\alpha }^{\frac{1}{2}}\bar{\sigma }^{\frac{\alpha }{2}}.\) Here, we have used Young’s inequality with some \(\varepsilon >0\).

Choosing \(\varepsilon <\underline{\sigma }^{\alpha }\), then there exists a constant \(C'''\) independent of k, such that

$$\begin{aligned}&\hat{{\mathbb {E}}}\left[ \left( \displaystyle \int _{0}^{T}|Z_{s}^{1,k}|^{2}ds\right) ^{\frac{\alpha }{2}}\right] \\&\quad \le C'''\left\{ \hat{{\mathbb {E}}}\left[ \sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }\right] +\left( \hat{{\mathbb {E}}}\left[ \sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }\right] \right) ^{\frac{1}{2}} +\hat{{\mathbb {E}}}\left[ \displaystyle \int _{0}^{T}|f(s,0,0,0)|^{\alpha }ds\right] \right\} . \end{aligned}$$

Moreover, by (4.3), we also have

$$\begin{aligned} \hat{{\mathbb {E}}}[|A_{T}^{1,k}|^{\alpha }]&\le C''''\left\{ \hat{{\mathbb {E}}}\left[ \sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }\right] +\left( \hat{{\mathbb {E}}}\left[ \sup _{0\le s \le T}|Y_{s}^{1,k}|^{\alpha }\right] \right) ^{\frac{1}{2}}\right. \\&\quad \left. +\hat{{\mathbb {E}}}\left[ \displaystyle \int _{0}^{T}|f(s,0,0,0)|^{\alpha }ds\right] \right\} , \end{aligned}$$

where \(C''''\) is a constant independent of k. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, B., Gao, H., Li, M. et al. Reflected Forward-Backward Stochastic Differential Equations Driven by G-Brownian Motion with Continuous Monotone Coefficients. Qual. Theory Dyn. Syst. 21, 140 (2022). https://doi.org/10.1007/s12346-022-00671-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00671-1

Keywords

Mathematics Subject Classification

Navigation