Skip to main content
Log in

Symplectic groups over noncommutative algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We introduce the symplectic group \({{\,\mathrm{Sp}\,}}_2(A,\sigma )\) over a noncommutative algebra A with an anti-involution \(\sigma \). We realize several classical Lie groups as \({{\,\mathrm{Sp}\,}}_2\) over various noncommutative algebras, which provides new insights into their structure theory. We construct several geometric spaces, on which the groups \({{\,\mathrm{Sp}\,}}_2(A,\sigma )\) act. We introduce the space of isotropic A-lines, which generalizes the projective line. We describe the action of \({{\,\mathrm{Sp}\,}}_2(A,\sigma )\) on isotropic A-lines, generalize the Kashiwara-Maslov index of triples and the cross ratio of quadruples of isotropic A-lines as invariants of this action. When the algebra A is Hermitian or the complexification of a Hermitian algebra, we introduce the symmetric space \(X_{{{\,\mathrm{Sp}\,}}_2(A,\sigma )}\), and construct different models of this space. Applying this to classical Hermitian Lie groups of tube type (realized as \({{\,\mathrm{Sp}\,}}_2(A,\sigma )\)) and their complexifications, we obtain different models of the symmetric space as noncommutative generalizations of models of the hyperbolic plane and of the three-dimensional hyperbolic space. We also provide a partial classification of Hermitian algebras in Appendix A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, for Hermitian Lie groups the \(\Theta \)-positive structure is related to the theory of Lie semigroups.

References

  1. Abikoff, W.: The bounded model for hyperbolic \(3\)-space and a quaternionic uniformization theorem. Math. Scand. 54(1), 5–16 (1984)

    Article  MathSciNet  Google Scholar 

  2. Alessandrini, D., Guichard, O., Rogozinnikov, E., Wienhard, A.: Noncommutative coordinates for symplectic representations. Mem. Amer. Math. Soc., to appear, (2022)

  3. Baes, M.: Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras. Linear Algebra Appl. 422(2–3), 664–700 (2007)

    Article  MathSciNet  Google Scholar 

  4. Berenstein, A., Retakh, V.: Noncommutative double Bruhat cells and their factorizations. Int. Math. Res. Not. 2005(8), 477–516 (2005)

    Article  MathSciNet  Google Scholar 

  5. Berenstein, A., Retakh, V.: Lie algebras and Lie groups over noncommutative rings. Adv. Math. 218(6), 1723–1758 (2008)

    Article  MathSciNet  Google Scholar 

  6. Berenstein, A., Retakh, V.: Noncommutative marked surfaces. Adv. Math. 328, 1010–1087 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, volume 36 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin (1998). Translated from the 1987 French original, Revised by the authors

  8. Clerc, J.L., Ørsted, B.: The Maslov index revisited. Transform. Groups 6(4), 303–320 (2001)

    Article  MathSciNet  Google Scholar 

  9. Faraut, J., Korányi, A.: Analysis on symmetric cones. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (1994). Oxford Science Publications

  10. Gelfand, I., Gelfand, S., Retakh, V., Wilson, R.L.: Quasideterminants. Adv. Math. 193(1), 56–141 (2005)

    Article  MathSciNet  Google Scholar 

  11. Guichard, O., Wienhard, A.: \(\theta \)-positivity. in preparation

  12. Guichard, O., Wienhard, A.: Positivity and higher Teichmüller theory. In: European Congress of Mathematics, pages 289–310. Eur. Math. Soc., Zürich (2018)

  13. Hanche-Olsen, H., Størmer, E.: Jordan operator algebras, volume 21 of Monographs and Studies in Mathematics. Pitman (Advanced Publishing Program), Boston, MA (1984)

  14. Jacobson, N.: Derivation algebras and multiplication algebras of semi-simple Jordan algebras. Ann. of Math. 2(50), 866–874 (1949)

    Article  MathSciNet  Google Scholar 

  15. Kaneyuki, S.: The Sylvester’s law of inertia in simple graded Lie algebras. J. Math. Soc. Japan 50(3), 593–614 (1998)

    Article  MathSciNet  Google Scholar 

  16. Koufany, K.: Jordan algebras, geometry of Hermitian symmetric spaces and non-commutative Hardy spaces, volume 33 of Seminar on Mathematical Sciences. Keio University, Department of Mathematics, Yokohama (2005)

  17. Lam, T.Y.: A first course in noncommutative rings, volume 131 of Graduate Texts in Mathematics. 2nd edn., Springer-Verlag, New York (2001)

  18. Lion, G., Vergne, M.: The Weil representation, Maslov index and theta series, volume 6 of Progress in Mathematics. Birkhäuser, Boston, Mass. (1980)

  19. Quinn, J.A.: A complex quaternion model for hyperbolic 3-space. arXiv:1701.06709, (2017)

  20. Rowen, L.H.: Graduate algebra: noncommutative view, volume 91 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2008)

  21. Satake, I.: Algebraic structures of symmetric domains, volume 4 of Kanô Memorial Lectures. Iwanami Shoten, Tokyo; Princeton University Press, Princeton, N.J. (1980)

  22. Wienhard, A.: An invitation to higher Teichmüller theory. Proceedings of the ICM 2018, (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkady Berenstein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D.A, E.R and A.W. acknowledge support from U.S. National Science Foundation grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR Network). E.R. and A.W. were supported by the National Science Foundation under Grant No. 1440140 and the Clay Foundation (A.W.), while they were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall Semester 2019. A.W acknowledges funding by the Deutsche Forschungsgemeinschaft within the Priority Program SPP 2026 “Geometry at Infinity”, by the European Research Council under ERC-Consolidator grant 614733, and by the Klaus-Tschira-Foundation. E.R. acknowledges funding by the Deutsche Forschungsgemeinschaft within the RTG 2229 “Asymptotic invariants and limits of groups and spaces” and the Priority Program SPP 2026 “Geometry at Infinity”, and thanks the Labex IRMIA of the Université de Strasbourg for support during the finishing of this project. A.B. was partially supported by Simons Foundation Collaboration Grant No. 636972. This work has been supported under Germany’s Excellence Strategy EXC-2181/1 - 390900948 (the Heidelberg STRUCTURES Cluster of Excellence).

Appendices

Appendix A: Classification of Hermitian algebras

The goal of this section is to classify all Hermitian algebras. To do this, we consider a more general class of algebras that we call pre-Hermitian, and classify them.

Let \((A,\sigma )\) be a ring with an anti-involution \(\sigma \). As usual, we say that \(a\in A\) is symmetric if \(\sigma (a)=a\), denote the set of all symmetric elements in A by \(A^\sigma \). Clearly, if \(2\in A^\times \), then \(A^\sigma \) is a (unital) Jordan ring under the operation \(a\circ b=2^{-1}(ab+ba)\).

If A is an algebra over a commutative ring F and \(\sigma \) is F-linear, then we will refer to \((A,\sigma )\) as an F-algebra.

Definition A.1

The Jacobson radical J(A) of a unital ring A is the set of all \(x\in A\) such that \(1+AxA\subseteq A^\times \). In particular, \(1 + J(A)\) is a subgroup of \(A^\times \).

It is well-known (see e.g., [17]) that J(A) is a nilpotent ideal for any (left or right) Artinian ring A. Moreover, such a ring is semisimple if and only if \(J(A)=\{0\}\). In particular, this holds for finite dimensional algebras over any field.

Proposition A.2

J(A) is invariant under any anti-involution of any ring A.

Proof

Clearly, if \(\sigma \) is any anti-involution of A then \(1+A\sigma (x)A\subset A^\times \) for all \(x\in J(A)\) hence \(\sigma (x)\in J(A)\). \(\square \)

Definition A.3

We say that a ring \((A,\sigma )\) is pre-Hermitian if \(A^\sigma \cap J(A)=\{0\}\).

If \(J(A)=\{0\}\), A is sometimes called Jacobson semisimple (in particular, any \(C^*\)-algebra is Jacobson semisimple as a consequence of Gelfand-Naimark theorem). Also note that any \({\mathbb {R}}\)-subalgebra of \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}})\) invariant under the Hermitian transposition is semisimple and, therefore, Jacobson semisimple (see [20], Exercise 18, p. 168). By definition, any Jacobson semisimple \((A,\sigma )\) is pre-Hermitian.

Definition A.4

We say that a ring \((A,\sigma )\) is Hermitian if \(a^2+b^2=0\) for \(a,b\in A^\sigma \) implies that \(a=b=0\).

In particular, nonzero symmetric elements of Hermitian rings are not nilpotent.

Remark A.5

In contrast to the main part of this paper, we do not assume in this appendix that a Hermitian ring is an algebra over a real closed field.

Remark A.6

If \((A,\sigma )\) is a Hermitian ring such that \(J(A)=\{0\}\), then, similarly to the Proposition 2.58, we can show that \(-a^2\in A^\sigma _{\ge 0}\) (See definition 2.11) for all \(a\in A^{-\sigma }\).

Remark A.7

Similarly to \(A^\sigma _{\ge 0}\), for any ring \((A,\sigma )\) denote by \(A^\sigma _{>0}\) the set of all sums \(a_1^2+\cdots +a_n^2\), \(n\ge 1\), where all \(a_i\) are nonzero elements of \(A^\sigma \). By definition, \(A^\sigma _{>0}\) is an additive sub-semigroup of A, which may or may not contain 0. Clearly, \(A^\sigma _{\ge 0}=A^\sigma _{>0}\cup \{0\}\). Also, it is immediate that if \(0\notin A^\sigma _{>0}\), then \((A,\sigma )\) is Hermitian. It would be interesting to classify those rings in which the opposite implication holds.

Proposition A.8

Any Hermitian ring A with nilpotent J(A) is pre-Hermitian.

Proof

Assume, there exists \(0\ne x\in J(A)\cap A^\sigma \). Since J(A) is a nilpotent ideal, there exist \(x\in J(A)\) such that \(a:=x^n\ne 0\) and \(a^2=0\) for some \(n>0\). Therefore, \(a=0\), which is a contradiction. \(\square \)

Proposition A.9

Let \((A,\sigma )\) be a pre-Hermitian ring. Then \(\sigma (x)=-x\) and \(xy=-yx\) for any \(x,y\in J(A)\). In particular, \(2x^2=0\).

Proof

Let \(x\in J(A)\). Since \(x+\sigma (x)\in J(A)\cap A^\sigma =\{0\}\), \(\sigma (x)=-x\). Furthermore, \(-xy=\sigma (xy)=\sigma (y)\sigma (x)=yx\) for \(x,y\in J(A)\). \(\square \)

Proposition A.10

If \((A,\sigma )\) is pre-Hermitian then:

  1. (a)

    \(\sigma (x)=-x\) for all \(x\in J(A)\) and \(xa=\sigma (a)x\) for all \(x\in J(A)\), \(a\in A\).

  2. (b)

    \(yx=-xy\) for all \(x,y\in J(A)\) and \(xyz=0\) for all \(x,y,z\in J(A)\).

  3. (c)

    \((\sigma (a)-a)xy=xy(\sigma (a)-a)=0\) all \(a\in A\), \(x,y\in J(A)\)

Proof

Prove (a). Since \(\sigma (x)\in J(A)\) for all \(x\in J(A)\) by Proposition A.2, \(x+\sigma (x)\in J(A)\cap A^\sigma =\{0\}\). This proves the fist assertion. To prove the second assertion, using the fact that \(xa\in J(A)\) for all \(x\in J(A)\), \(a\in A\), we obtain

$$\begin{aligned} xa=-\sigma (xa)=-\sigma (a)\sigma (x)=\sigma (a)x\ . \end{aligned}$$

This proves (a).

To prove (b) note that \(xy=-\sigma (xy)=-yx\) for all \(x,y\in J(A)\). To prove the second assertion, note that

$$\begin{aligned} \sigma (xyz)=-zyx=-yxz=xyz \end{aligned}$$

for all \(x,y,z\in J(A)\) hence \(xyz=0\). This proves (b).

To prove (c) note that on the one hand, \(xya=x\sigma (a)y=axy\) and on the other hand, \((xy)a=\sigma (a)(xy)\) for all \(a\in A\) and \(x,y\in J(A)\). This proves (c).

The proposition is proved. \(\square \)

Corollary A.11

If \((A,\sigma )\) and \((B,\sigma ')\) are pre-Hermitian algebras over F, \(char ~F \ne 2\) and \((A,\sigma )\otimes (B,\sigma ')\) is also pre-Hermitian, then either \(J(A)=\{0\}\) or \(J(B)=\{0\}\).

Proof

Indeed, If \(x\in J(A)\), \(y\in J(B)\), then \(x\otimes y\in (A\otimes B)^{\sigma \otimes \sigma '}\) by Proposition A.10. \(\square \)

Example A.12

Let V be a finite-dimensional vector space over a field F, \(char ~F\ne 2\), \({\hat{A}}=\Lambda (V)\) be the exterior algebra of V, and \({\hat{\sigma }}\) be the unique anti-involution of \({\hat{A}}\) such that \({\hat{\sigma }}(v)=-v\) for all \(v\in V\). Denote by A the quotient of \({\hat{A}}\) by the ideal generated by \(\Lambda ^3 V\), so that \(A= F\oplus V\oplus \Lambda ^2 V\) as a vector space. Since \({\hat{\sigma }}\) preserves the ideal generated by \(\Lambda ^3 V\), it induces a well-defined anti-involution \(\sigma \) on A. Clearly, \(J(A)=V\oplus \Lambda ^2 V\) and \(\sigma (x)=-x\) for all \(x\in J(A)\). Thus, \((A,\sigma )\) is pre-Hermitian with \(A^\sigma =F\) and \(A^\sigma _{> 0}=F_{> 0}\).

Proposition A.13

Let A be a pre-Hermitian ring. Then

$$\begin{aligned} A^\circ \cdot J(A)=J(A)\cdot A^\circ =0 \end{aligned}$$

where \(A^\circ =A\cdot [A,A]=[A,A]\cdot A\) is the ideal of A generated by all commutators \([a,b]=ab-ba\), \(a,b\in A\).

Proof

It follows from Proposition A.10 that

$$\begin{aligned} abx=x\sigma (ab)=x\sigma (b)\sigma (a)=bx\sigma (a)=bax \end{aligned}$$

for all \(a,b\in A\), \(x\in J(A)\) hence \([a,b]x=0\). Also, \(x[a,b]=[\sigma (b),\sigma (a)]x=0\).

The proposition is proved. \(\square \)

Example A.14

\(A^\circ =A\) if A is simple noncommutative and \(({{\,\mathrm{Mat}\,}}_n (A))^{\circ }={{\,\mathrm{Mat}\,}}_n (A)\) if \(A^{\circ }=A\).

The following definition is motivated by Proposition A.10.

Definition A.15

We say that a (unitless) ring J is nilpotent pre-Hermitian if:

  • \(2x=0\) implies that \(x=0\) (this is relevant only in characteristic 2).

  • \(yx=-xy\) and \(xyz=0\) for all \(x,y,z\in J\).

Clearly, for any nilpotent pre-Hermitian ring J with \(0\notin 2(J\setminus \{0\})\), the assignments \(j\mapsto -j\) define an anti-involution on J with no fixed points in \(J\setminus \{0\}\).

Let J be a ring and K be a commutative ring that acts on J from the left. We denote the action by:

$$\begin{aligned} \begin{matrix} {\triangleright }:&{} K\times J &{} \rightarrow &{} J\\ &{} (k,j) &{} \mapsto &{} k{\triangleright }j. \end{matrix} \end{aligned}$$

Similarly, if K acts in J from the right, we denote the action by:

$$\begin{aligned} \begin{matrix} {\triangleleft }:&{} J\times K &{} \rightarrow &{} J\\ &{} (j,k) &{} \mapsto &{} j{\triangleleft }k. \end{matrix} \end{aligned}$$

We say that a ring J is a left K-algebra if J is a left K-module with respect to \({\triangleright }\) and

$$\begin{aligned} k{\triangleright }(jj')=(k{\triangleright }j) j' \end{aligned}$$

for all \(j,j'\in J\), \(k\in K\) (so we will sometimes denote it simply by \(k{\triangleright }jj'\)).

We say that a ring J is a right K-algebra if J is a right K-module with respect to \({\triangleleft }\) and

$$\begin{aligned} (jj'){\triangleleft }k=j(j'{\triangleleft }k) \end{aligned}$$

for all \(j,j'\in J\), \(k\in K\) (so we will sometimes denote it simply by \(jj'{\triangleleft }k\)).

Definition A.16

Let K be a commutative unital ring with an involution \({\overline{\cdot }}\), J be a unitless K-algebra and \(\gamma :K\rightarrow J\) be a homomorphism of abelian groups. We say that J is a \((K,{\overline{\cdot }},\gamma )\)-algebra if:

$$\begin{aligned} \begin{aligned} j(\gamma (kk')-k{\triangleright }\gamma (k')-k'{\triangleright }\gamma (k)-\gamma (k)\gamma (k'))=0,\\ j(k{\triangleright }j')=({{\overline{k}}}{\triangleright }j-j\gamma (k))j',(k-{{\overline{k}}}){\triangleright }jj'=j\gamma (k)j' \end{aligned} \end{aligned}$$
(1.3)

for all \(j,j'\in J\), \(k,k'\in K\).

When J satisfies \(J^3=0\), e.g., when J is pre-Hermitian, the conditions (1.3) simplify to

$$\begin{aligned} \begin{aligned} j(\gamma (kk')-k{\triangleright }\gamma (k')-k'{\triangleright }\gamma (k))=0,\\ j(k{\triangleright }j')={{\overline{k}}}{\triangleright }jj'=k{\triangleright }jj' \end{aligned} \end{aligned}$$
(1.4)

for all \(j,j'\in J\), \(k\in K\).

Proposition A.17

Let K be a commutative unital ring and J be a \((K,{\overline{\cdot }},\gamma )\)-algebra. Then:

(a) \(J\oplus K\) has a structure of an associative unital ring with the multiplication given by

$$\begin{aligned} (j+k)(j'+k')=jj'+k{\triangleright }j'+\overline{k'}{\triangleright }j-j\gamma (k')+kk' \end{aligned}$$
(1.5)

for all \(j,j'\in J\), \(k,k'\in K\) (we denote this ring by \(J\rtimes _\gamma K\) and refer to as semidirect sum of J and K over \(\gamma \)).

(b) J is a two-sided ideal in \(J\rtimes _\gamma K\), moreover, the projection to the second factor is a surjective homomorphism \(J\rtimes _\gamma K \twoheadrightarrow K\) of rings whose kernel is J.

(c) Suppose that \(2\in K^\times \) and \(\gamma (kk')={{\overline{k}}}{\triangleright }\gamma (k')+k'{\triangleright }\gamma (k)-\gamma (k)\gamma (\overline{k'})+\frac{\gamma (k)\gamma (k')}{2}\) for all \(k,k'\in K\). Then the assignments \(k\mapsto \iota (k):={{\overline{k}}}+\frac{\gamma ( k)}{2}\) define an injective ring homomorphism \(\iota :K\hookrightarrow J\rtimes _\gamma K\). Suppose additionally that \(j\gamma (k)=2j\gamma ({{\overline{k}}})+\gamma ({{\overline{k}}})j\) for all \(j\in J\), \(k\in K\). Then \(J\rtimes _\gamma K=J\rtimes _\mathbf{0} \iota (K)\).

Proof

Define a map \({\triangleleft }:J\times K\rightarrow J\) by

$$\begin{aligned} j{\triangleleft }k:={{\overline{k}}}{\triangleright }j-j\gamma (k)\ . \end{aligned}$$

Lemma A.18

\({\triangleleft }\) is an action of K on J commuting with \({\triangleright }\) and \((jj'){\triangleleft }k=j(j'{\triangleleft }k)\) for all \(j,j'\in J\), \(k\in K\), (i.e., J is a right K-algebra).

Proof

First, show that \({\triangleleft }\) commute with \({\triangleright }\). Indeed,

$$\begin{aligned} (k{\triangleright }j){\triangleleft }k'=\overline{k'}{\triangleright }(k{\triangleright }j) - (k{\triangleright }j)\gamma (k')=k {\triangleright }(\overline{k'}{\triangleright }j) -k{\triangleright }j\gamma (k') =k{\triangleright }(j{\triangleleft }k') \end{aligned}$$

for all \(j\in J\), \(k,k'\in K\) because J is a left K-algebra.

Furthermore, \((j{\triangleleft }k){\triangleleft }k'=\overline{k'}{\triangleright }(j{\triangleleft }k)-(j{\triangleleft }k)\gamma (k')=\overline{kk'} {\triangleright }j-\overline{k'}{\triangleright }j\gamma (k)-(j{\triangleleft }k)\gamma (k')\)

$$\begin{aligned} \overline{kk'} {\triangleright }j-(j{\triangleleft }k')\gamma (k)-j\gamma (k)\gamma (k')-(j{\triangleleft }k)\gamma (k') =\overline{kk'}{\triangleright }j-j\gamma (k'k)=j{\triangleleft }(kk') \end{aligned}$$

for all \(k,k'\in K\), \(j\in J\) by the commutation of \({\triangleleft }\) with \({\triangleright }\) and the first condition of (1.3).

Since \(J\gamma (1)=\{0\}\) by the first condition (1.3), i.e., \({\triangleleft }1=Id_J\), this proves that J is a K-module under \({\triangleleft }\).

Finally,

$$\begin{aligned} j(j'{\triangleleft }k)= & {} j({{\overline{k}}}{\triangleright }j'-j'\gamma (k))=k{\triangleright }j j'-j\gamma ({{\overline{k}}})j'\\&-jj'\gamma (k)={{\overline{k}}}{\triangleright }jj'-jj'\gamma (k)=(jj'){\triangleleft }k \end{aligned}$$

for all \(k,k'\in K\), \(j\in J\) by the second and third conditions of (1.3). This proves that J is a right K-algebra under \({\triangleleft }\).

The lemma is proved. \(\square \)

Note that the identity

$$\begin{aligned} (j{\triangleleft }k)j'=j(k{\triangleright }j') \end{aligned}$$
(1.6)

for all \(k\in K\), \(j,j'\in J\) is equivalent to the second condition (1.3).

The following is immediate and well-known.

Lemma A.19

Let R and S be associative ring, R is unitless, S is unital and R is an S-bimodule such that

$$\begin{aligned} s{\triangleright }(rr')=(s{\triangleright }r)r',~(rr'){\triangleleft }s=r(r'{\triangleleft }s),~(r{\triangleleft }s)r'=r(s{\triangleright }r') \end{aligned}$$
(1.7)

for all \(r,r'\in R\), \(s,s'\in S\). Then \(A:=R\oplus S\) is a unital associative ring with the product given by

$$\begin{aligned} (r+s)(r'+s')=rr'+s{\triangleright }r'+r{\triangleleft }s'+ss' \end{aligned}$$

for all \(r,r'\in R\), \(S,s'\in S\).

Thus, (1.6) and Lemma A.18 guarantee that all assumptions of Lemma A.19 hold for \(R=J\), \(S=K\), therefore, \(J\oplus K\) is a unital associative ring. This proves (a).

Part (b) is obvious.

Prove (c). Indeed, \(\iota (k)\iota (k')=({{\overline{k}}}+\frac{\gamma (k)}{2})(\overline{k'}+\frac{\gamma (k')}{2})=\overline{kk'}+\frac{{{\overline{k}}}{\triangleright }\gamma (k')+\gamma (k){\triangleleft }\overline{k'}}{2}+\frac{\gamma (k)\gamma (k')}{4}\)

$$\begin{aligned} =\overline{kk'}+\frac{{{\overline{k}}}{\triangleright }\gamma (k')+k'{\triangleright }\gamma (k)-\gamma (k)\gamma (\overline{k'})}{2}+\frac{\gamma (k)\gamma (k')}{4} =\overline{kk'}+\frac{\gamma (k'k)}{2}=\iota (kk') \end{aligned}$$

for all \(k,k'\in K\) by the first relation (1.3). Therefore, \(\iota \) is a homomorphism of rings. Its injectivity follows because \(\iota \) splits the canonical homomorphism from (b). Finally,

$$\begin{aligned} j\iota (k)=j({{\overline{k}}}+\frac{\gamma (k)}{2})=kj-j\gamma ({{\overline{k}}})+\frac{j\gamma (k)}{2}=k j+\frac{\gamma ({{\overline{k}}})}{2}j=\iota ({{\overline{k}}})j \end{aligned}$$

for all \(j\in J\), \(k\in K\). This proves that J is a \((\iota (K),{\widetilde{\cdot }},\mathbf{0})\)-algebra with the trivial \(\gamma =\mathbf{0}\) and:

\(\bullet \) The involution \({\widetilde{\cdot }}\) defined by \(\widetilde{\iota (k)}=\iota ({{\overline{k}}})\) for all \(k\in K\).

\(\bullet \) The left action of \(\iota (k)\) on J by the left multiplication in \(J\rtimes _\gamma K\).

In particular, \(J\rtimes _\gamma K=J\rtimes _\mathbf{0} \iota (K)\). Part (c) is proved.

The proposition is proved. \(\square \)

Given a commutative ring \((K,{\overline{\cdot }})\) with anti-involution, we say that a left K-algebra J is a \((K,{\overline{\cdot }})\)-algebra if

$$\begin{aligned} {{\overline{k}}}{\triangleright }jj'=k{\triangleright }jj'=j(k{\triangleright }j') \end{aligned}$$

for all \(j,j'\in J\), \(k\in K\). Clearly, \((K,{\overline{\cdot }})\)-algebras are same as \((K,{\overline{\cdot }},\mathbf{0})\)-algebras. Also, in view of (1.4), any nilpotent pre-Hermitian \((K,{\overline{\cdot }},\gamma )\)-algebra is automatically a \((K,{\overline{\cdot }})\)-algebra.

Proposition A.20

Let \((K,{\overline{\cdot }})\) be any commutative ring with anti-involution and let J be any nilpotent pre-Hermitian ring. Suppose that J is a \((K,{\overline{\cdot }})\)-algebra and let \(\gamma :K\rightarrow J\) be any homomorphism of abelian groups such that: \(\gamma (kk')={{\overline{k}}}{\triangleright }\gamma (k')+k'{\triangleright }\gamma (k)\) for all \(k,k'\in k\). Then:

  1. (a)

    J is a \((K,{\overline{\cdot }},\gamma )\)-algebra.

  2. (b)

    Suppose additionally that \(\gamma ({{\overline{k}}})=\gamma (k)\) for all \(k\in K\). Then the assignments \(j+k\mapsto \gamma (k)-j+{{\overline{k}}}\) define an anti-involution \(\sigma \) on \(J\rtimes _\gamma K\). Moreover, if K is semisimple (i.e., is a direct sum of fields), then \((J\rtimes _\gamma K,\sigma )\) is pre-Hermitian.

Proof

Prove (a). Indeed, the conditions (1.4) hold automatically for this choice of \(\gamma \) and because J is \((K,{\overline{\cdot }})\)-algebra. This proves (a).

Prove (b). First, let us verify that \(\sigma \) is an anti-involution. Indeed,

$$\begin{aligned} \sigma (\sigma (j+k))\!=\!\sigma (\gamma (k)-j+{{\overline{k}}})\!=\!j-\gamma (k)+\sigma ({{\overline{k}}})\!=\!j-\gamma (k)+k+\gamma ({{\overline{k}}})=j+k \end{aligned}$$

for all \(j\in J\), \(k\in K\). That is, \(\sigma ^2=1\).

Furthermore, by definition (1.5), \(j k={{\overline{k}}}j-j\gamma (k)={{\overline{k}}}j+\gamma (k)j=k\sigma (k)j\) hence \(kj=j\sigma (k)\) for all \(j\in J\), \(k\in K\). Then

$$\begin{aligned} \sigma (kk')= & {} \overline{kk'}+\gamma (kk')=\overline{kk'}+{{\overline{k}}}\gamma (k')+k'\gamma (k)=\overline{kk'}+{{\overline{k}}}(\sigma (k')-{{\overline{k}}}')+k'\gamma (k) \\= & {} {{\overline{k}}}\sigma (k')+\gamma (k)\sigma (k')=\sigma (k)\sigma (k') \end{aligned}$$

for all \(k,k'\in K\). Clearly,

$$\begin{aligned} \sigma (jj')=-jj'=j'j=\sigma (j')\sigma (j) \end{aligned}$$

for all \(j,j'\in J\). Also,

$$\begin{aligned} \sigma (kj)= & {} \sigma (k {\triangleright }j)=-k {\triangleright }j=-kj=-j\sigma (k)=\sigma (j)\sigma (k) \\ \sigma (jk)= & {} \sigma (\sigma (k)j)=\sigma (j)\sigma (\sigma (k)=-jk=-\sigma (k)j=\sigma (k)\sigma (j) \end{aligned}$$

for all \(j\in J\), \(k\in K\).

This proves the first assertion. To prove the second assertion, note that semisimplicity of K and Proposition A.17(b) imply that Jacobson radical of \(J\rtimes _\gamma K\) is J. This finishes proof of (b).

The proposition is proved. \(\square \)

The following is an immediate corollary of Proposition A.20.

Corollary A.21

Let \((A,\sigma )\) be any pre-Hermitian ring and K be any commutative unital subring of A such that \(K\cap J(A)=\{0\}\) and \(\sigma (K)\subset K+J(A)\). Then

  1. (a)

    J(A) is both a \((K,{\overline{\cdot }})\)-algebra and a \((K,{\overline{\cdot }},\gamma )\)-algebra, where:

    • J(A) is a K-algebra via left multiplication.

    • \({\overline{\cdot }}:K\rightarrow K\) and \(\gamma :K\rightarrow J(A)\) are determined by \(\sigma (k)=\gamma (k)+{{\overline{k}}}\) for all \(k\in K\).

  2. (b)

    The subring of A generated by K and J(A) is naturally isomorphic to \(J(A)\rtimes _\gamma K\).

Recall that F is a perfect field if every irreducible polynomial over F has distinct roots. In particular, all fields of characteristic zero and all finite fields are perfect.

Theorem A.22

(Wedderburn-Mal’cev theorem (see [20], Exercise 18, p. 191)) Let R be a finite dimensional algebra over a perfect field F. Then

  1. (a)

    There is a splitting \(\iota \) of the short exact sequence \(J(R)\rightarrow R\rightarrow S:=R/J(R)\), e.g., \(R=\iota (S)\oplus J(R)\).

  2. (b)

    The images of all splittings \(\iota :S\hookrightarrow R\) are conjugate in R by \(1+J(R)\).

Remark A.23

In fact, the multiplication in R in Theorem A.22 is as in Lemma A.19 since J(R) is naturally a bimodule over \(S\iota (S)\).

The following is immediate.

Lemma A.24

In the assumptions of Theorem A.22 suppose that \(\sigma (\iota (S))=\iota (S)\) for an anti-involution \(\sigma \) of R and a splitting \(\iota :S\hookrightarrow R\). Then \(R^\sigma =\iota (S)^\sigma \oplus J(R)^\sigma \).

The following is well-known (cf. [20], Theorem 25C.17).

Theorem A.25

In the assumptions of Theorem A.22, there exists a faithful n-dimensional representation \(\rho \) of R into the algebra of \(\mathbf{n}\)-block upper triangular matrices (for some partition \(\mathbf{n}\) of n) such that \(\rho (J(R))\) is in the block-strictly upper triangular part of \(Mat (\mathbf{n}, F)\) and the image under \(\rho \) of at least one splitting \(\iota :S\hookrightarrow R\) is in the block-diagonal part of \(Mat (\mathbf{n}, F)\).

We will use Theorem A.22 to finish the classification of finite-dimensional pre-Hermitian algebras over perfect fields as follows.

Theorem A.26

Let \((A,\sigma )\) be a finite-dimensional pre-Hermitian algebra over a perfect field F, denote by K the maximal abelian ideal of the semisimple quotient \(S=A/J(A)\) and by B its complement so that \(S=B\oplus K\). Then there is a unique copy of B in A splitting the canonical homomorphism \(\pi :A\twoheadrightarrow S\), that is, \(A= B\oplus {\tilde{K}}\), \(\sigma (B)=B\), \(\sigma ({\tilde{K}})={\tilde{K}}\), where \({\tilde{K}}=\pi ^{-1}(K)\). More precisely, \({\tilde{K}}=J(A)\) if \(K= \{0\}\) and \({\tilde{K}}\cong J(A)\rtimes _\gamma K\) otherwise (in the notation of Corollary A.21).

Proof

Indeed, \(B^\circ =B\) because each simple component C of B satisfies \(C^\circ =C\) since \([C,C]\ne 0\). Furthermore, in the notation of Theorem A.22(a), fix a splitting \(\iota :S\hookrightarrow A\) of homomorphism \(\pi :A\twoheadrightarrow S\). Then \(\iota (B)=\iota (B^\circ )=\iota (B)^\circ \subset A^\circ \) hence \(\iota (B)J(A)=J(A)\iota (B)=\{0\}\) by Proposition A.13. To prove the first assertion note that, by Theorem A.22(b), the images of B under any splitting \(S\hookrightarrow A\) are conjugate to \(\iota (B)\) by \(1+ J(A)\). Since \((1+J(A))\iota (b)=\iota (b)(1+J(A))=\iota (b)\) for all \(b\in B\), we see that \(\iota (B)\) is a unique copy of B in A. In particular, \(\sigma (\iota (B))=\iota (B)\).

Furthermore, by definition, \(\sigma ({\tilde{K}})={\tilde{K}}\) and \({\tilde{K}}=\iota (K)+J(A)\) as a vector space over F. Since \(\iota (B) \iota (K)= \iota (K)\iota (B)=\{0\}\), we see that \(\iota (B){\tilde{K}}={\tilde{K}} \iota (B)=\{0\}\). Therefore, \(A=B\oplus {\tilde{K}}\), as an algebra.

If \(K=\{0\}\), then, clearly, \({\tilde{K}}=J(A)\). Suppose that \(K\ne \{0\}\). Since \(\sigma (\iota (K))\subset {\tilde{K}}=\iota (K)+J(A)\), we see that \(\iota (K)\) satisfies the hypotheses of Corollary A.21. Therefore, \({\tilde{K}}=J(A)\rtimes _\gamma \iota (K)\).

The theorem is proved. \(\square \)

The following is immediate.

Corollary A.27

In the assumptions of Theorem A.26, one has

  1. (a)

    If \(K=\{0\}\) then A is Hermitian if and only if B is Hermitian. Otherwise, A is Hermitian if and only if both B and \({\tilde{K}}\) are Hermitian.

  2. (b)

    If A is Hermitian, then

    \(A^\sigma _{\ge 0}={\left\{ \begin{array}{ll} B^\sigma _{\ge 0} &{} \text {if }\tilde{K}=\{0\}\\ B^\sigma _{\ge 0}\oplus {\tilde{K}}^\sigma _{\ge 0} &{}\text {otherwise} \end{array}\right. }\) and \(A^\sigma _{+}={\left\{ \begin{array}{ll} B^\sigma _{+} &{} \text {if }\tilde{K}=\{0\}\\ B^\sigma _{+}\oplus K^\sigma _+ &{}\text {otherwise} \end{array}\right. }\).

We discuss now anti-involutions on simple rings.

Clearly, if \((A,\sigma )\) is a Hermitian algebra over a field F, then so is F, i.e., F is a formally real field. In particular, if \(A^\sigma =F\), then \((A,\sigma )\) is Hermitian if and only if F is a formally real.

The following is an immediate consequence of the Skolem-Noether theorem.

For any ring \((A,\tau )\) with an anti-involution \(\tau \) denote by \(A^{[\tau ]}\) the set of all \(v\in A^\times \) such that \(\tau (v)=v z\), for some \(z\in Z(A)^\times \) such that \(\tau (z)=z^{-1}\) (In particular, if each element of the center Z(A) is fixed under \(\tau \), then \(\tau (v)\in \{v,-v\}\), i.e., ). Clearly, the assignments \((w,v)\mapsto w{\triangleright }v:=w v\tau (w)\) define an action of the multiplicative group \(A^\times \) on \(A^{[\tau ]}\).

Lemma A.28

Let \((A,\tau )\) be a simple Artinian ring. Then

  1. (a)

    For any anti-involution \(\sigma :A\rightarrow A\) there is an element \(v\in A^{[\tau ]}\) (unique up to multiplication by elements of the field Z(A)) such that \(\sigma (a)=v\tau (a)v^{-1}\) for all \(a\in A\).

  2. (b)

    For any \(v\in A^{[\tau ]}\) the assignments \(a\mapsto v\tau (a)v^{-1}\) define an involution \(\sigma _v\) on A.

  3. (c)

    For any \(w\in A^\times \) the assignments \(a\mapsto waw^{-1}\) define an isomorphism of rings with anti-involution \((A,\sigma _v){\widetilde{\rightarrow }} (A,\sigma _{w{\triangleright }v})\).

Definition A.29

We say that an algebra \((A,\sigma )\) over F is thin if \(A^\sigma =F\).

The first example of a thin algebra is given by Example A.12. Another one is a (generalized) quaternion algebra (see Remark A.33 below).

Clearly every thin algebra \((A,\sigma )\) over F is pre-Hermitian and the direct sum of two F-algebras is never thin because \((A\oplus A')^{\sigma \oplus \sigma '}=A^\sigma \oplus {A'}^{\sigma '}\). Moreover, the following is an immediate consequence of Theorem A.26.

Lemma A.30

If a finite-dimensional algebra \((A,\sigma )\) over a perfect field F with \(char(F)\ne 2\) is thin then it is either simple noncommutative, or direct sum of two copes of a simple algebra interchanged by \(\sigma \), or pre-Hermitian whose semisimple quotient A/J(A) is a field extension of F.

Proposition A.31

Let F be a perfect field with \(char(F)\ne 2\) and \((A,\sigma )\) be a thin semisimple finite-dimensional algebra over F. Then:

  1. (a)

    \(A=F\oplus A^{-\sigma }\) where \(A^{-\sigma }=\{a\in A:\sigma (a)=-a\}\) is the space of skew-symmetric elements.

  2. (b)

    \(A^{-\sigma }\) admits a unique nonsingular symmetric bilinear form \(\beta \) such that \(aa'+a'a=-\beta (a,a')\) for all \(a\in A^{-\sigma }\).

  3. (c)

    If a is a nilpotent element in A then \(a\in A^{-\sigma }\) and \(a^2=0\).

  4. (d)

    \(A^{-\sigma }\) is a Lie algebra with respect to the commutator bracket \([a,a']=aa'-a'a=2aa'+\beta (a,a')\)

  5. (e)

    \(2a''a'a-2aa'a''=\beta ([a,a'],a'')=\beta (a,[a',a''])\) and \(\beta ([a,a'],[a,a'])=\beta (a,a)\beta (a',a')-\beta (a,a')^2\) for \(a,a',a''\in A^{-\sigma }\).

Proof

Part (a) is obvious because \(A^\sigma =F\). To prove (b) note that \({\hat{\beta }}(a,a'):=-aa'-a'a\) is fixed by \(\sigma \) and thus belongs to F for all \(a,a'\in A\). This is obviously a symmetric bilinear form on A, denote by \(\beta \) its restriction to \(A^{-\sigma }\). If z is in the radical of \(\beta \), then \(za+az=0\) for all \(a\in A^{-\sigma }\), which implies that \(z=0\) by Lemma  A.30. This proves (b).

Prove (c). Let \(a\in A\) be a nilpotent and suppose that \(a\notin A^{-\sigma }\). Then there exists \(c\in F^\times \) such that the nilpotent element \(b:=ca\) satisfies \(\sigma (b)=1-b\). Therefore, \((1-b)^n=0\) for some \(n\ge 2\). This contradicts to the non-invertibility of b. Thus, \(\sigma (a)=-a\) and \(a^2\) is a nilpotent in \(A^\sigma =F\), that is, \(a^2=0\).

Part (d) is obvious because \(\sigma ([a,a'])=-[a,a']\) for all \(a,a'\in A^\sigma \).

Prove (e). Indeed,

$$\begin{aligned} \beta ([a,a'],a'')= & {} -[a,a']a''-a''[a,a']=-(2aa'+\beta (a,a'))a''\\&-a''(-2a'a-\beta (a',a)) \\= & {} 2a''a'a-2aa'a''=-\beta ([a'',a'],a) \end{aligned}$$

for all \(a,a',a''\in A^\sigma \). This proves the first assertion. To prove the second one, compute

$$\begin{aligned} \beta ([a,a'],[a,a'])= & {} 2(aa'-a'a)a'a+2aa'(a'a-aa') \\= & {} -2(aa'+a'a)a'a-2aa'(a'a+aa')+4a{a'}^2a+4a'a^2a' \\= & {} 2\beta (a,a')(aa'+a'a)-2a^2\beta (a',a')\\&-2{a'}^2\beta (a,a)=\beta (a,a)\beta (a',a') -\beta (a,a')^2 \end{aligned}$$

for all \(a,a'\in A^{-\sigma }\). This proves (d).

The proposition is proved. \(\square \)

Theorem A.32

Let F be a perfect field with \(char(F)\ne 2\) and \((A,\sigma )\) be a thin semisimple finite-dimensional algebra over F. Then A is either a division algebra over F with \(\dim _F A\in \{1,2,4\}\) or \(A=F\oplus F\) (so that \(\sigma \) is the permutation of summands).

Proof

Indeed, any simple component of A is \({{\,\mathrm{Mat}\,}}_n(D)\), where D is a division algebra over F. Note that if \(n\ge 3\), then A contains an element \(e=e_{12}+e_{23}\) which contradicts to Proposition A.31(c). Thus, \(n\le 2\) and \(A\in \{D,D\oplus D,{{\,\mathrm{Mat}\,}}_2(D),{{\,\mathrm{Mat}\,}}_2(D)\oplus {{\,\mathrm{Mat}\,}}_2(D)\}\) by Lemma A.30. Note, however, that the last two algebras are not thin. If \(A=D\oplus D\), then \((x,\sigma (x))\in A^\sigma \) for all \(x\in D\), i.e. we always have a copy of D in \(A^\sigma =F\), that is, \(D=F\).

The theorem is proved. \(\square \)

For any ring F and \(\alpha ,\beta \in F\) denote by \({\mathbb {H}}_{\alpha ,\beta }\) the F-algebra with a presentation:

$$\begin{aligned} {\mathbb {H}}_{\alpha , \beta }=\langle i,j\ |\ i^2=\alpha ,~j^2=\beta ,~ji=-ij\rangle \ . \end{aligned}$$

Clearly, it admits a unique anti-involution \({\overline{\cdot }}\) such that \({{\overline{i}}}=-i\), \({{\overline{j}}}=-j\). By construction, \(a{{\overline{a}}}={{\overline{a}}} a\in F\) for all \(a\in {\mathbb {H}}_{\alpha , \beta }\). In particular, \({\mathbb {H}}_{\alpha , \beta }\) is a division algebra if and only if F is a field and \(a {\overline{a}} \in F^\times \) for all nonzero \(a\in {\mathbb {H}}_{\alpha , \beta }\).

Remark A.33

Any 4-dimensional division algebra D over a field F with \({{\,\mathrm{char}\,}}F\ne 2\) is isomorphic to \({\mathbb {H}}_{\alpha ,\beta }\) for some non-squares \(\alpha ,\beta \in F^\times \). Clearly, it is thin with the above anti-involution \({\overline{\cdot }}\). Note that if both \(-\alpha \) and \(-\beta \) are complete squares in F, then \({\mathbb {H}}_{\alpha ,\beta } \cong {\mathbb {H}}_{-1,-1}\) is the ordinary algebra of quaternions.

Remark A.34

Suppose that \({{\,\mathrm{char}\,}}F\ne 2\) and the algebraic closure \({{\overline{F}}}\) of F is a quadratic extension of F. Then any division algebra over F is isomorphic to either \({{\overline{F}}}\) or to some \({\mathbb {H}}_{\alpha ,\beta }\).

Generalizing the above observations, we construct some twisted group algebras of abelian groups with anti-involutions. Recall that, given a group G and its linear action \(\triangleright \) on a commutative ring K, a map \(\chi :G\times G\rightarrow K\) is called a 2-cocycle on G (in K) if

$$\begin{aligned} (g\triangleright \chi (g',g''))\chi (g,g'g'')=\chi (g,g')\chi (gg',g'') \end{aligned}$$

for all \(g,g',g''\in G\).

Furthermore, denote by \(K_\chi G\) the \(\chi \)-twisted group algebra of G, i.e., a K-algebra with a free K-basis \(\{[g], g\in G\}\) and the multiplication table:

$$\begin{aligned}{}[g][g']=\chi (g,g')\cdot [gg'], [g]k=g\triangleright k\cdot [g] \end{aligned}$$

for all \(g,g'\in G\), \(k\in K\). It is well-known that any central simple (e.g., a division) algebra A over a field \(F=K^G\) is isomorphic to some \(K_\chi G\) so that K is a Galois field extension of F.

The following is immediate.

Lemma A.35

Let \({\overline{\cdot }}\) be an involution on K. Then the following statements are equivalent for a 2-cocycle \(\chi :G\times G\rightarrow K\):

  1. (a)

    The assignments \(k\cdot [g]\mapsto [\sigma (g)]\cdot {{\overline{k}}}\) for \(g\in G\), \(k\in K\) define an anti-involution on \(K_\chi G\).

  2. (b)

    \(\sigma (g)\triangleright {{\overline{k}}}=\overline{g^{-1}{\triangleright }k}\) and \(\overline{\chi (g,g')}=\overline{gg'}\triangleright \chi (\sigma (g'),\sigma (g))\) for all \(g,g'\in G\), \(k\in K\).

In particular, if the G-action \(\triangleright \) is trivial, the cocycle conditions simplifies:

$$\begin{aligned} \chi (gg',g'')\chi (g,g')=\chi (g,g'g'')\chi (g',g'') \end{aligned}$$

for all \(g,g',g''\in G\) (e.g., \(\chi \) is a bicharacter of G).

The following is immediate.

Lemma A.36

Let G be an abelian group, trivially acting on K, \({\overline{\cdot }}\) be an anti-involution on K and \(\varepsilon :G\rightarrow K^\times \), \(g\mapsto \varepsilon _g\) be a map. Then the following are equivalent:

  1. (a)

    The assignments \(k\cdot [g]\mapsto {{\overline{k}}}\varepsilon _g\cdot [g]\) for \(g\in G\), \(k\in K\) define an anti-involution \(\sigma _\varepsilon \) on \(K_\chi G\).

  2. (b)

    \(\overline{\varepsilon _g}=\varepsilon _g^{-1}\) and \(\chi (g',g)=\overline{\chi (g,g')}\varepsilon _{gg'}\varepsilon _g^{-1}\varepsilon _{g'}^{-1}\) for all \(g,g'\in G\).

In particular, \((K_\chi G)^{\sigma _\varepsilon }=\bigoplus \limits _{g\in G}K_g\cdot [g]\), where \(K_g=\{k\in K:{{\overline{k}}}=k\cdot \varepsilon _g\}\) for all \(g\in G\).

Now we classify anti-involutions on 4-dimensional division algebras.

Proposition A.37

In the notation as above, suppose that \({\mathbb {H}}_{\alpha ,\beta }\) is a noncommutative division algebra (over a field F). Then any anti-involution on \({\mathbb {H}}_{\alpha ,\beta }\) is either \({\overline{\cdot }}\) or is given by

$$\begin{aligned} \sigma (a)= v{{\overline{x}}}v^{-1} \end{aligned}$$

for some nonzero imaginary v, i.e., such that \({{\overline{v}}}=-v\) (in what follows, we denote the latter anti-involution by \(\sigma _v\)).

Proof

By Skolem-Noether theorem, any anti-involution \(\sigma \) on \({\mathbb {H}}_{\alpha ,\beta }\) can be written as \(\sigma (x)=v{{\overline{x}}}v^{-1}\) where \(v\in {\mathbb {H}}_{\alpha ,\beta }^{\times }\). Then \(\sigma ^2(a)=uau^{-1}\) where \(u=v{{\overline{v}}}^{-1}\). Since \(\sigma ^2=1\), we have \(a=uau^{-1}\) for all \(a\in \), i.e. u is central in \({\mathbb {H}}_{\alpha ,\beta }\). That is \(u=c\in F^\times \). This implies that \({{\overline{v}}}=c^{-1} v\) hence either \(c=1\), \(v\in F^\times \) or \(c=-1\), \({{\overline{v}}}=-v\). \(\square \)

Proposition A.38

In the assumptions of Proposition A.37, for any nonzero imaginary \(v\in {\mathbb {H}}_{\alpha ,\beta }\) there exist imaginary \(w,w'\) such that \([w,w']=v\) and \(\{1,w,w',v\}\) is a basis of \({\mathbb {H}}_{\alpha ,\beta }\). In particular, \(vw=-wv\), \(vw'=-w'v\), \(ww'+w'w\in F\), \(({\mathbb {H}}_{\alpha ,\beta })^{\sigma _v}=F+Fw+Fw'\) and \(({\mathbb {H}}_{\alpha ,\beta })^{-\sigma _v}=F\cdot v\).

Proof

Denote by V the set of all imaginary elements of \({\mathbb {H}}_{\alpha ,\beta }\). For an imaginary v define an F-linear map \(f_v:V\rightarrow {\mathbb {H}}_{\alpha ,\beta }\) by \(f_v(a):= va+av\). Clearly, the range of \(f_v\) is F, in particular, \(Ker~f_v\) is a 2-dimensional subspace of the (3-dimensional) space V. Then

$$\begin{aligned} \sigma _v(a)=v{{\overline{a}}}v^{-1}=-vav^{-1}=avv^{-1}=a \end{aligned}$$

for any \(a\in Ker~f_v\). That is, \(F+Ker~f_v\subset ({\mathbb {H}}_{\alpha ,\beta })^{\sigma _v}\). Since \(v\in ({\mathbb {H}}_{\alpha ,\beta })^{-\sigma _v}\), we see that \(F+Ker~f_v= ({\mathbb {H}}_{\alpha ,\beta })^{\sigma _v}\) and \(({\mathbb {H}}_{\alpha ,\beta })^{-\sigma _v}=Fv\).

Therefore, \([w,w']\in F^\times v\) for any basis \(\{w,w'\}\) of \(Ker~f_v\).

The proposition is proved. \(\square \)

Note that if \({\mathbb {H}}={\mathbb {H}}_{-1,-1}\) is the ordinary quaternion algebra over \({\mathbb {R}}\), then \(w^2=-w{{\overline{w}}}<0\) for any imaginary \(w\in {\mathbb {H}}\), hence \((\sqrt{-w^2})^2+w^2=0\) and we obtain the following immediate corollary of Proposition A.38.

Corollary A.39

The algebra \(({\mathbb {H}}, \sigma )\) is Hermitian if and only if \(\sigma ={\overline{\cdot }}\).

We conclude the section with recalling the Cayley-Dickson construction of (generalized) octonions \({{\mathbb {O}}}_{\alpha ,\beta }:={\mathbb {H}}_{\alpha ,\beta }\oplus {\mathbb {H}}_{\alpha ,\beta }\), as a free module over a ring F with the following multiplication table

$$\begin{aligned} (a,b)(a',b')=(aa'-\overline{b'}b,b'a+b\,\overline{a'})\ . \end{aligned}$$

This is a non-associative F-algebra with the anti-involution given by

$$\begin{aligned} \overline{(a,b)}=({\overline{a}},-b) \end{aligned}$$

so that \(\overline{(a,b)}(a,b)=(a,b)\overline{(a,b)}=(a{{\overline{a}}}+\overline{b}b,0)\) for all \(a,b\in {{\mathbb {O}}}_{\alpha ,\beta }\). In particular, if \({\mathbb {H}}_{\alpha ,\beta }\) is a division algebra, then \({{\mathbb {O}}}_{\alpha ,\beta }\) is a non-associative division algebra as well.

Appendix B: Isomorphisms and embeddings of matrix algebras

Some tensor products and direct products of matrix algebras are related in a way we want to discuss in this section. The described in here isomorphisms and embeddings are used in the main part of the paper as a tool to construct symmetric spaces and study their properties.

As usual, for every algebra A and (anti-)involution \(\sigma \), we denote by \(A^\sigma \) the set of fixed points of \(\sigma \) in A.

We also remind our standard notation of anti-involutions on matrix algebras.

  1. (1)

    If A is \({{\,\mathrm{Mat}\,}}(n,{\mathbb {R}})\) or \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}})\), then the anti-involution given by the transposition of the matrix is denoted by \(\sigma \).

  2. (2)

    If A is \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}})\), then by \({\bar{\sigma }}\) is denoted the anti-involution given by \(\sigma \) composed with the complex conjugation.

  3. (3)

    If A is \({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\})\), then the anti-involution \(\sigma _0:A\rightarrow A\) is given by the rule \(\sigma _0(r_1+r_2j)=\sigma (r_1)+{\bar{\sigma }}(r_2)j\) where \(r_1,r_2\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\). Another anti-involution \(\sigma _1:A\rightarrow A\) is given by the rule \(\sigma _1(r_1+r_2j)={\bar{\sigma }}(r_1)-\sigma (r_2)j\) where \(r_1,r_2\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\).

If \(n=1\), we identify the algebra of \(1\times 1\) matrices with the corresponding (skew-)field and use the same notation for the (anti-)involution in a (skew-)field as in the matrix algebra over this (skew-)field, in particular, in this case \(\sigma \) is the identity map on \({\mathbb {R}}\) or \({\mathbb {C}}\), \({\bar{\sigma }}\) is the complex conjugation on \({\mathbb {C}}\) and \(\sigma _1\) is the quaternionic conjugation on \({\mathbb {H}}\).

1.1 Three isomorphisms of matrix algebras

In this section, we describe three well-known matrix algebras isomorphisms.

1.1.1 \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}})\otimes _{\mathbb {R}}{\mathbb {C}}\) and \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}})\times {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}})\)

Fact B:1

The following map is an isomorphism of \({\mathbb {C}}\{i\}\)-algebras:

$$\begin{aligned} \begin{matrix} \chi :&{} {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes _{\mathbb {R}}{\mathbb {C}}\{i\} &{} \rightarrow &{} {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\times {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\\ &{} a+bI &{} \mapsto &{} (a+bi , a-bi) \end{matrix} \end{aligned}$$

where \(a,b\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\). In particular,

$$\begin{aligned} \chi ({{\,\mathrm{Id}\,}}I\otimes 1)=(i,-i),\;\chi ({{\,\mathrm{Id}\,}}\otimes i)=(i,i). \end{aligned}$$

The anti-involution induced by \(\sigma \otimes {{\,\mathrm{Id}\,}}\)

$$\begin{aligned} \chi \circ (\sigma \otimes {{\,\mathrm{Id}\,}})\circ \chi ^{-1} \end{aligned}$$

on \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\times {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\) acts in the following way:

$$\begin{aligned} (m_1,m_2)\mapsto (m^T_1,m^T_2). \end{aligned}$$

The anti-involution induced by \({\bar{\sigma }}\otimes {{\,\mathrm{Id}\,}}\)

$$\begin{aligned} \chi \circ ({\bar{\sigma }}\otimes {{\,\mathrm{Id}\,}})\circ \chi ^{-1} \end{aligned}$$

on \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\times {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\) acts in the following way:

$$\begin{aligned} (m_1,m_2)\mapsto (m^T_2,m^T_1). \end{aligned}$$

The involution induced by \({{\,\mathrm{Id}\,}}\otimes {\bar{\sigma }}\)

$$\begin{aligned} \chi \circ ({{\,\mathrm{Id}\,}}\otimes {\bar{\sigma }})\circ \chi ^{-1} \end{aligned}$$

on \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\times {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\) acts in the following way:

$$\begin{aligned} (m_1,m_2)\mapsto ({\bar{m}}_2,{\bar{m}}_1). \end{aligned}$$

Therefore:

$$\begin{aligned} \chi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes _{\mathbb {R}}{\mathbb {C}}\{i\})^{{\bar{\sigma }}\otimes {{\,\mathrm{Id}\,}}})= & {} \{(m,m^T)\mid m\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\}, \\ \chi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes _{\mathbb {R}}{\mathbb {C}}\{i\})^{{\bar{\sigma }}\otimes {\bar{\sigma }}})= & {} {{\,\mathrm{Herm}\,}}(n,{\mathbb {C}}\{i\})\times {{\,\mathrm{Herm}\,}}(n,{\mathbb {C}}\{i\}),\\ \chi ({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\}))= & {} \chi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes _{\mathbb {R}}{\mathbb {C}}\{i\})^{{{\,\mathrm{Id}\,}}\otimes {\bar{\sigma }}})\\= & {} \{(m,{\bar{m}})\mid m\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\}. \end{aligned}$$

1.1.2 \({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}})\otimes _{\mathbb {R}}{\mathbb {C}}\) and \({{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}})\)

Fact B:2

The following map is an isomorphism of algebras:

$$\begin{aligned} \begin{matrix} \psi :&{} {{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\})\otimes _{\mathbb {R}}{\mathbb {C}}\{I\} &{} \rightarrow &{} {{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{i\})\\ &{} (q_1+q_2j) + (p_1+p_2j)I &{} \mapsto &{} \begin{pmatrix} q_1+p_1i &{} q_2+p_2i\\ -{\bar{q}}_2-{\bar{p}}_2i &{} {\bar{q}}_1+{\bar{p}}_1i \end{pmatrix}. \end{matrix} \end{aligned}$$

where \(q_1,q_2,p_1,p_2\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\). This is a \({\mathbb {C}}\{I\}\)-\({\mathbb {C}}\{i\}\)-isomorphism, i.e. \(\psi (xI)=\psi (x)i\) for \(x\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\})\otimes _{\mathbb {R}}{\mathbb {C}}\{I\}\). In particular,

$$\begin{aligned} \chi ({{\,\mathrm{Id}\,}}i\otimes 1)= & {} \begin{pmatrix} {{\,\mathrm{Id}\,}}i &{} 0\\ 0 &{} -{{\,\mathrm{Id}\,}}i \end{pmatrix},\;\chi ({{\,\mathrm{Id}\,}}\otimes j)=\begin{pmatrix} 0 &{} {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}}&{} 0 \end{pmatrix}, \\ \chi ({{\,\mathrm{Id}\,}}k\otimes 1)= & {} \begin{pmatrix} 0&{} {{\,\mathrm{Id}\,}}i\\ {{\,\mathrm{Id}\,}}i &{} 0 \end{pmatrix},\;\chi ({{\,\mathrm{Id}\,}}\otimes I)={{\,\mathrm{Id}\,}}i. \end{aligned}$$

The anti-involution induced by \(\sigma _0\otimes {{\,\mathrm{Id}\,}}\)

$$\begin{aligned} \psi \circ (\sigma _0\otimes {{\,\mathrm{Id}\,}})\circ \psi ^{-1} \end{aligned}$$

on \({{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}})\) acts in the following way:

$$\begin{aligned} m\mapsto \begin{pmatrix} {{\,\mathrm{Id}\,}}&{} 0\\ 0 &{} -{{\,\mathrm{Id}\,}}\end{pmatrix}m^T\begin{pmatrix} {{\,\mathrm{Id}\,}}&{}\quad 0\\ 0 &{}\quad -{{\,\mathrm{Id}\,}}\end{pmatrix}. \end{aligned}$$

The anti-involution induced by \(\sigma _1\otimes {{\,\mathrm{Id}\,}}\)

$$\begin{aligned} \psi \circ (\sigma _1\otimes {{\,\mathrm{Id}\,}})\circ \psi ^{-1} \end{aligned}$$

on \({{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}})\) acts in the following way:

$$\begin{aligned} m\mapsto -\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}m^T\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}=\begin{pmatrix} 0 &{}\quad i\\ -i &{}\quad 0 \end{pmatrix}m^T\begin{pmatrix} 0 &{}\quad i\\ -i &{}\quad 0 \end{pmatrix}. \end{aligned}$$

The involution induced by \({{\,\mathrm{Id}\,}}\otimes {\bar{\sigma }}\)

$$\begin{aligned} \psi \circ ({{\,\mathrm{Id}\,}}\otimes {\bar{\sigma }})\circ \psi ^{-1} \end{aligned}$$

on \({{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}})\) acts in the following way:

$$\begin{aligned} m\mapsto -\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}{\bar{m}}\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}=\begin{pmatrix} 0 &{}\quad i\\ -i &{}\quad 0 \end{pmatrix}{\bar{m}}\begin{pmatrix} 0 &{}\quad i\\ -i &{}\quad 0 \end{pmatrix}. \end{aligned}$$

The anti-involution induced by \(\sigma _0\otimes {\bar{\sigma }}\)

$$\begin{aligned} \psi \circ (\sigma _0\otimes {\bar{\sigma }})\circ \psi ^{-1} \end{aligned}$$

on \({{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}})\) acts in the following way:

$$\begin{aligned} m\mapsto \begin{pmatrix} 0 &{} {{\,\mathrm{Id}\,}}\\ {{\,\mathrm{Id}\,}}&{} 0 \end{pmatrix}{\bar{m}}^T\begin{pmatrix} 0 &{} {{\,\mathrm{Id}\,}}\\ {{\,\mathrm{Id}\,}}&{} 0 \end{pmatrix}. \end{aligned}$$

Therefore:

$$\begin{aligned}&\psi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\})\otimes _{\mathbb {R}}{\mathbb {C}}\{I\})^{\sigma _1\otimes {{\,\mathrm{Id}\,}}}) \\&\quad =\left\{ m\in {{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{i\})\,\Big \vert \,m=-\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}m^T\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}\right\} \\&\quad ={{\,\mathrm{{\mathfrak {o}}}\,}}\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}={{\,\mathrm{{\mathfrak {sp}}}\,}}(2n,{\mathbb {C}}), \\&\psi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\})\otimes _{\mathbb {R}}{\mathbb {C}}\{I\})^{\sigma _0\otimes {\bar{\sigma }}}) \\&\quad =\left\{ m\in {{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{i\})\,\Big \vert \,m=\begin{pmatrix} 0 &{} {{\,\mathrm{Id}\,}}\\ {{\,\mathrm{Id}\,}}&{} 0 \end{pmatrix}{\bar{m}}^T\begin{pmatrix} 0 &{} {{\,\mathrm{Id}\,}}\\ {{\,\mathrm{Id}\,}}&{} 0\end{pmatrix}\right\} , \\&\psi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\})\otimes _{\mathbb {R}}{\mathbb {C}}\{I\})^{\sigma _1 \otimes {\bar{\sigma }}})={{\,\mathrm{Herm}\,}}(2n,{\mathbb {C}}),\\&\psi ({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\}))=\psi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\})\otimes _{\mathbb {R}}{\mathbb {C}}\{I\})^{{{\,\mathrm{Id}\,}}\otimes {\bar{\sigma }}}) \\&\quad =\left\{ m\in {{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{i\})\,\Big \vert \,m=-\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}{\bar{m}}\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}\right\} \\&\quad =\left\{ \begin{pmatrix} q_1 &{} q_2\\ -{\bar{q}}_2 &{} {\bar{q}}_1 \end{pmatrix}\,\Big \vert \,q_1,q_2\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\right\} . \end{aligned}$$

1.1.3 \({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}})\otimes _{\mathbb {R}}{\mathbb {H}}\) and \({{\,\mathrm{Mat}\,}}(4n,{\mathbb {R}})\)

Fact B:3

The following map:

$$\begin{aligned} \phi :{{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes _{\mathbb {R}}{\mathbb {H}}\{i,j,k\}\rightarrow {{\,\mathrm{Mat}\,}}(4n,{\mathbb {R}}) \end{aligned}$$

defined on generators of \(A_{\mathbb {H}}\) as follows:

$$\begin{aligned} \phi (a\otimes i)= & {} \begin{pmatrix} 0 &{} a &{} 0 &{} 0 \\ -a &{} 0 &{} 0 &{} 0 \\ 0 &{} \quad 0 &{}\quad 0 &{}\quad -a \\ 0 &{}\quad 0 &{} \quad a &{} \quad 0 \end{pmatrix},\; \phi (a\otimes j)=\begin{pmatrix} 0 &{}\quad 0 &{} \quad a &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad a \\ -a &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad -a &{} \quad 0 &{}\quad 0 \end{pmatrix}, \\ \phi (a\otimes k)= & {} \begin{pmatrix} 0 &{}\quad 0 &{} \quad 0 &{}\quad a \\ 0 &{}\quad 0 &{}\quad -a &{}\quad 0 \\ 0 &{}\quad a &{}\quad 0 &{}\quad 0 \\ -a &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix},\; \phi (aI\otimes 1)=\begin{pmatrix} 0 &{}\quad -a &{}\quad 0 &{}\quad 0 \\ a &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{} \quad 0 &{}\quad -a \\ 0 &{}\quad 0 &{}\quad a &{}\quad 0 \end{pmatrix}, \\ \phi (aJ\otimes 1)= & {} \begin{pmatrix} 0 &{}\quad 0 &{}\quad -a &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad a \\ a &{} \quad 0 &{} \quad 0 &{}\quad 0 \\ 0 &{}\quad -a &{}\quad 0 &{}\quad 0 \end{pmatrix},\; \phi (aK\otimes 1)=\begin{pmatrix} 0 &{} 0 &{} 0 &{} -a \\ 0 &{}\quad 0 &{}\quad -a &{}\quad 0 \\ 0 &{}\quad a &{}\quad 0 &{} \quad 0 \\ a &{} \quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix} \end{aligned}$$

where \(a\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {R}})\) is an \({\mathbb {R}}\)-algebra isomorphism.

The anti-involution \(\sigma _1\otimes \sigma _0\) corresponds under \(\phi \) to the following anti-involution

$$\begin{aligned} \phi \circ (\sigma _1\otimes \sigma _0)\circ \phi \end{aligned}$$

on \({{\,\mathrm{Mat}\,}}(4n,{\mathbb {R}})\): \(m\mapsto -\Xi m^T \Xi \) where

$$\begin{aligned} \Xi :=\begin{pmatrix} 0 &{}\quad 0 &{}\quad 0 &{}\quad {{\,\mathrm{Id}\,}}_n \\ 0 &{}\quad 0 &{}\quad -{{\,\mathrm{Id}\,}}_n &{}\quad 0 \\ 0 &{}\quad {{\,\mathrm{Id}\,}}_n &{}\quad 0 &{}\quad 0 \\ -{{\,\mathrm{Id}\,}}_n &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{pmatrix}. \end{aligned}$$

The anti-involution \(\sigma _1\otimes \sigma _1\) corresponds under \(\phi \) to the transposition on \({{\,\mathrm{Mat}\,}}(4n,{\mathbb {R}})\).

Therefore:

$$\begin{aligned}&\phi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes _{\mathbb {R}}{\mathbb {H}}\{i,j,k\})^{\sigma _1\otimes \sigma _0})\\&\quad = \left\{ m\in {{\,\mathrm{Mat}\,}}(4n,{\mathbb {R}})\mid m=-\Xi m^T \Xi \right\} \\&\quad ={{\,\mathrm{{\mathfrak {o}}}\,}}(\Xi )\cong {{\,\mathrm{{\mathfrak {sp}}}\,}}(4n,{\mathbb {R}}), \\&\phi (({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{i,j,k\})\otimes _{\mathbb {R}}{\mathbb {H}}\{i,j,k\})^{\sigma _1\otimes \sigma _1})={{\,\mathrm{Sym}\,}}(4n,{\mathbb {R}}), \end{aligned}$$

The real locus \({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\) of \({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes _{\mathbb {R}}{\mathbb {H}}\{i,j,k\}\) is mapped by \(\phi \) to:

$$\begin{aligned}&\phi ({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})) \\&\quad =\left\{ \begin{pmatrix} a &{} \quad -b &{}\quad -c &{}\quad -d \\ b &{}\quad a &{}\quad -d &{}\quad c \\ c &{}\quad d &{}\quad a &{}\quad -b \\ d &{}\quad -c &{}\quad b &{}\quad a \end{pmatrix}\,\Big \vert \,a,b,c,d\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {R}})\right\} . \end{aligned}$$

1.2 Embeddings between matrix algebras

In this section, we consider the following two embeddings:

$$\begin{aligned}&{{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes {\mathbb {C}}\{j\}\hookrightarrow {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes {\mathbb {H}}\{i,j,k\}, \\&{{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes {\mathbb {C}}\{j\}\hookrightarrow {{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes {\mathbb {H}}\{i,j,k\}. \end{aligned}$$

We use these embedding to see the symmetric space for a real group inside the symmetric space for a complexified group.

1.2.1 Embedding \({{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes {\mathbb {C}}\{j\}\hookrightarrow {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes {\mathbb {H}}\{i,j,k\}\)

In the previous sections, we have seen the isomorphisms:

$$\begin{aligned} \begin{matrix} \chi :&{} {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes _{\mathbb {R}}{\mathbb {C}}\{j\} &{} \rightarrow &{} {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{j\})\times {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{j\})\\ &{} a+bI &{} \mapsto &{} (a+bj , a-bj) \end{matrix} \end{aligned}$$

where \(a,b\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{j\})\) and

$$\begin{aligned} \begin{matrix} \psi :&{} {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes _{\mathbb {R}}{\mathbb {H}}\{i,j,k\} &{} \rightarrow &{} {{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{i\})\\ &{} (q_1+q_2j) + (p_1+p_2j)I &{} \mapsto &{} \begin{pmatrix} q_1+p_1i &{} q_2+p_2i\\ -{\bar{q}}_2-{\bar{p}}_2i &{} {\bar{q}}_1+{\bar{p}}_1i \end{pmatrix}. \end{matrix} \end{aligned}$$

where \(q_1,q_2,p_1,p_2\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\).

We want to describe the map

$$\begin{aligned} \psi \circ \iota \circ \chi ^{-1}:{{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{j\})\times {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{j\})\rightarrow {{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{i\}) \end{aligned}$$

where

$$\begin{aligned} \iota :{{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes {\mathbb {C}}\{j\}\hookrightarrow {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\otimes {\mathbb {H}}\{i,j,k\} \end{aligned}$$

is the natural embedding. Let \((a,b):=(a_1+a_2j,b_1+b_2j)\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{j\})\times {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{j\})\) for \(a_1,a_2,b_1,b_2\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {R}})\), then

$$\begin{aligned} \chi ^{-1}(a,b)=\frac{a+b}{2}+\frac{a-b}{2j}I=\frac{a_1+b_1+(a_2+b_2)j}{2}+\frac{a_2-b_2-(a_1-b_1)j}{2}I. \end{aligned}$$

Therefore,

$$\begin{aligned} \psi (\chi ^{-1}(a,b))=\frac{1}{2}\begin{pmatrix} a_1+b_1+(a_2-b_2)i &{} a_2+b_2-(a_1-b_1)i\\ -(a_2+b_2)+(a_1-b_1)i &{} a_1+b_1+(a_2-b_2)i \end{pmatrix}. \end{aligned}$$

We also describe the image of the map \(\psi \circ \iota \circ \chi ^{-1}\):

$$\begin{aligned} {{\,\mathrm{Im}\,}}(\psi \circ \iota \circ \chi ^{-1})= & {} \left\{ \begin{pmatrix} q &{} p\\ -p &{} q \end{pmatrix}\,\Big \vert \,p,q\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{i\})\right\} \\= & {} \left\{ m\in {{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{i\})\,\Big \vert \,m=-\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}m\begin{pmatrix} 0 &{}\quad {{\,\mathrm{Id}\,}}\\ -{{\,\mathrm{Id}\,}} &{}\quad 0 \end{pmatrix}\right\} . \end{aligned}$$

1.2.2 Embedding \({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes {\mathbb {C}}\{j\}\hookrightarrow {{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes {\mathbb {H}}\{i,j,k\}\)

In the previous sections, we have seen the isomorphisms:

$$\begin{aligned} \begin{matrix} \psi :&{} {{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes _{\mathbb {R}}{\mathbb {C}}\{j\} &{} \rightarrow &{} {{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{I\})\\ &{} (q_1+q_2J) + (p_1+p_2J)j &{} \mapsto &{} \begin{pmatrix} q_1+p_1I &{} q_2+p_2I\\ -{\bar{q}}_2-{\bar{p}}_2I &{} {\bar{q}}_1+{\bar{p}}_1I \end{pmatrix}. \end{matrix} \end{aligned}$$

where \(q_1,q_2,p_1,p_2\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {C}}\{I\})\) and

$$\begin{aligned} \phi :{{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes _{\mathbb {R}}{\mathbb {H}}\{i,j,k\}\rightarrow {{\,\mathrm{Mat}\,}}(4n,{\mathbb {R}}) \end{aligned}$$

defined as in the Sect. B.1.3.

We want to describe the image of the map

$$\begin{aligned} \phi \circ \iota \circ \psi ^{-1}:{{\,\mathrm{Mat}\,}}(2n,{\mathbb {C}}\{I\})\rightarrow {{\,\mathrm{Mat}\,}}(4n,{\mathbb {R}}) \end{aligned}$$

where

$$\begin{aligned} \iota :{{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes {\mathbb {C}}\{j\}\hookrightarrow {{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes {\mathbb {H}}\{i,j,k\}, \end{aligned}$$

is the natural embedding.

Note that an element \(x\in {{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes {\mathbb {H}}\{i,j,k\}\) is contained in the subalgebra \({{\,\mathrm{Mat}\,}}(n,{\mathbb {H}}\{I,J,K\})\otimes {\mathbb {C}}\{j\}\) if and only if x commutes with \(1\otimes j\). So we obtain:

$$\begin{aligned} {{\,\mathrm{Im}\,}}(\psi \circ \iota \circ \chi ^{-1})=\left\{ m\in {{\,\mathrm{Mat}\,}}(4n,{\mathbb {R}})\mid m= -\phi ({{\,\mathrm{Id}\,}}_n\otimes j)m\phi ({{\,\mathrm{Id}\,}}_n\otimes j) \right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alessandrini, D., Berenstein, A., Retakh, V. et al. Symplectic groups over noncommutative algebras. Sel. Math. New Ser. 28, 82 (2022). https://doi.org/10.1007/s00029-022-00787-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00787-x

Keywords

Mathematics Subject Classification

Navigation