Skip to main content
Log in

On the Eisenstein functoriality in cohomology for maximal parabolic subgroups

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In his paper, ’On torsion in the cohomology of locally symmetric varieties’, Peter Scholze has introduced a new, purely topological method to construct the cohomology classes on arithmetic quotients of symmetric spaces of reductive groups over \(\mathbb {Q}\) originating from the cohomology of the similar quotients of Levi subgroups of maximal parabolic subgroups. We extend this construction beyond the cases he considers, and, in the complex case, to the cohomology of local systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Scholze does not seem to think that his method was new. It is new and probably yields new results: see Sect. 4.

  2. k a Gorenstein ring, for technical reasons (Sect. 2).

  3. We refer the reader to the text, as it would be tedious to introduce the relevant notation here.

  4. Michael Harris points out that similar ’topological’ arguments were already introduced in [13, 14]. See also [15, Cor. 6.24]. But the closest approach I find in the literature, for the Borel-Serre compactification, is in Harder’s [10] (see Section 1.2.3).

  5. More precisely, of \(G(\mathbb {R})/A_G\). Note that \(A_G\) depends on the \(\mathbb {Q}\)- structure.

  6. See the Appendix.

  7. This is announced by Schwermer [27, p.15].

  8. In fact \((\mathfrak {a}_M/\mathfrak {a}_G)^*\otimes \mathbb {C}\) ; similarly, consider \(\mathfrak {a}_M/\mathfrak {a}_G\) in (4.1). All our linear forms are trivial on \(\mathfrak {a}_G\).

  9. For a detailed study of certain Eisenstein classes when all the Eisenstein series are holomorphic, in the case of GL(n), see Harder-Raghuram [12].

  10. We choose KL adapted to our representations.

  11. I leave it to the reader to unravel the definitions of Speh and Vogan for our data.

  12. Vogan, personal communication.

References

  1. Arthur, J.: Eisenstein series and the trace formula. Automorphic forms, representations and L-functions, Proc. Sympos. Pure Math., XXXIII, Part 1, Amer. Math. Soc., pp. 253-274. Providence, R.I. (1979)

  2. Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comment. Math. Helv. 48, 436–491 (1973)

    Article  MathSciNet  Google Scholar 

  3. Borel, A., Wallach, N.R.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Annals of Mathematics Studies, 94. Princeton University Press, Princeton, N.J. (1980)

  4. Clozel, L.: Motifs et formes automorphes: applications du principe de fonctorialité. Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), Perspect. Math., 10, pp. 77-159. Academic Press, Boston, MA (1990)

  5. Franke, J.: Harmonic analysis in weighted \(L^2\)-spaces. Ann. Sci. Ecole Norm. Sup. (4) 31(2), 181–279 (1998)

  6. Grbac, N.: Eisenstein cohomology and automorphic L-functions. Cohomology of arithmetic groups, Springer Proc. Math. Stat., 245, pp. 35-50. Springer, Cham (2018)

  7. Harder, G.: On the cohomology of discrete arithmetically defined groups. Discrete subgroups of Lie groups and applications to moduli (Internat. Colloq., Bombay, 1973), pp. 129-160. Oxford Univ. Press, Bombay (1975)

  8. Harder, G.: Eisenstein cohomology of arithmetic groups. The case GL(2). Invent. Math. 89(1), 37–118 (1987)

    Article  Google Scholar 

  9. Harder, G.: Some results on the Eisenstein cohomology of arithmetic subgroups of \(GL_n\). Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, 1989), Lecture Notes in Math. 1447, pp. 85-153. Springer, Berlin (1990)

  10. Harder, G.: Arithmetic aspects of rank one Eisenstein cohomology. Cycles, motives and Shimura varieties, Tata Inst. Fund. Res. Stud. Math., 21, Tata Inst. Fund. Res., pp. 131-190. Mumbai (2010)

  11. Harder, G.: Cohomology of arithmetic groups, to appear

  12. Harder, G., Raghuram, A.: Eisenstein cohomology for \(GL_N\) and the special values of Rankin-Selberg \(L\)-fuctions. Princeton University Press, Annals of Math. Studies (2020)

  13. Harris, M., Zucker, S.: Boundary cohomology of Shimura varieties. III. Coherent cohomology on higher-rank boundary strata and applications to Hodge theory. Mém. Soc. Math. Fr. (N.S.) 85 (2001)

  14. Harris, M.: Weight zero Eisenstein cohomology of Shimura varieties via Berkovich spaces. Pacific J. Math. 268(2), 275–281 (2014)

    Article  MathSciNet  Google Scholar 

  15. Harris, M., Lan, K.W., Taylor, R., Thorne, J.: On the rigid cohomology of certain Shimura varieties. Res. Math. Sci. 3, 1–308 (2016)

    Article  MathSciNet  Google Scholar 

  16. Kuz’min, Yu.: The connection between the cohomology of groups and Lie algebras. (Russian) Uspekhi Mat. Nauk 37(4(226)), 161–162 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Matsumura, H.: Commutative ring theory. Translated from the Japanese by M. Reid. Cambridge Studies in Advanced Mathematics, 8. Cambridge University Press, Cambridge (1986)

  18. Milne, J.S.: Etale cohomology. Princeton Mathematical Series, No. 33. Princeton University Press, Princeton, N.J. (1980)

    Google Scholar 

  19. Moeglin, C., Waldspurger, J.-L.: Décomposition spectrale et séries d’Eisenstein. Une paraphrase de l’Ecriture. Progress in Mathematics, 113. Birkhäuser Verlag, Basel (1994)

  20. Moeglin, C., Waldspurger, J.-L.: Le spectre résiduel de GL(n). Ann. Sci. Ecole Norm. Sup. (4) 22(4), 605–674 (1989)

    Article  MathSciNet  Google Scholar 

  21. Newton, J., Thorne, J.: Torsion Galois representations over CM fields and Hecke algebras in the derived category, preprint

  22. Pickel, P.F.: Rational cohomology of nilpotent groups and Lie algebras. Comm. Algebra. 6(4), 409–419 (1978)

    Article  MathSciNet  Google Scholar 

  23. Pink, R.: Arithmetical compactification of mixed Shimura varieties. Bonner Mathematische Schriften, 209. Universität Bonn, Mathematisches Institut, Bonn (1990)

  24. Scholze, P.: On torsion in the cohomology of locally symmetric varieties. Ann. of Math. (2) 182(3), 945–1066 (2015)

    Article  MathSciNet  Google Scholar 

  25. Schwermer, J.: Kohomologie arithmetisch definierter Gruppen und Eisensteinreihen. Lecture Notes in Mathematics, 988. Springer-Verlag, Berlin (1983)

  26. Schwermer, J.: Eisenstein series and cohomology of arithmetic groups: the generic case. Invent. Math. 116(1–3), 481–511 (1994)

    Article  MathSciNet  Google Scholar 

  27. Schwermer, J.: Cohomology of arithmetic groups, automorphic forms and L-functions. Cohomology of arithmetic groups and automorphic forms (Luminy-Marseille, 1989), Lecture Notes in Math., 1447, pp. 1-29. Springer, Berlin (1990)

  28. Speh, B., Vogan, D.A., Jr.: Reducibility of generalized principal series representations. Acta Math. 145(3–4), 227–299 (1980)

    Article  MathSciNet  Google Scholar 

  29. Vogan, D.A., Jr.: Unitarizability of certain series of representations. Ann. of Math. (2) 120(1), 141–187 (1984)

    Article  MathSciNet  Google Scholar 

  30. Weibel, C.A.: An introduction to homological algebra. Cambridge Studies in Advanced Mathematics, vol. 38. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Clozel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix : Poincaré duality for small Gorenstein rings of coefficients

Appendix : Poincaré duality for small Gorenstein rings of coefficients

For clarity of notation, we denote here by R a local Artin ring that is Gorenstein and by \(k=R/\mathfrak {m}\) its residue field. The following theorem does not seem to figure in the literature, although (in fact for \(R=\mathbb {Z}/N\), N being prime to the characteristic) it is well–known for the étale cohomology of varieties over algebraically closed fields (e.g. [18, Cor. 11.2]).

Theorem A1

Assume X is a manifold of dimension d.

(i) There is a perfect pairing

$$\begin{aligned} H_c^i(X,R) \times H^{d-i}(X,R) \longrightarrow R \end{aligned}$$

(ii) If X is compact, this yields a perfect pairing

$$\begin{aligned} H^i(X,R) \times H^{d-i}(X,R) \longrightarrow R. \end{aligned}$$

(This is used in the proof of Lemma 2.1).

We first recall some properties of such rings.

$$\begin{aligned} \begin{array}{rcl} \mathrm {Ext}_R^i(k,R) &{}\cong k &{}(i=0)\\ &{}=0&{}(i>0). \end{array} \end{aligned}$$
(1)

Let \(\mathrm {inj}\, \dim \,M\) denote the injective dimension of a R–module M. Then

$$\begin{aligned} \mathrm {inj}\, \dim \,M =0 \Leftrightarrow \mathrm {Ext}_R^i(k,M)=0\quad (i>0). \end{aligned}$$
(2)

For (1) see [17, Thm 18.1]. For (2), [17, Lemma 1 p. 139]. In particular, in view of (1), (2) applies to \(M=R\) ; this implies that

$$\begin{aligned} R\, \mathrm {is}\,\mathrm { injective}\,\mathrm { as}\,\mathrm { a}\,R\mathrm {-module.} \end{aligned}$$
(3)

Finally, let E(k) be the injective envelope of k as a R–module.

$$\begin{aligned} E(k) \cong R. \end{aligned}$$
(4)

This follows from [17, Thm. 18.4] and the fact that R is an indecomposable R–module.

Let M be a finite R–module. Then (4) implies :

$$\begin{aligned}&\mathrm {The}\,\mathrm {pairing~}M\times \mathrm {Hom}_R(M,R) \longrightarrow R\\&\quad (x,f) \longmapsto f(x) \end{aligned}$$
(5)

is non–degenerate.

See [17, Thm 18.6].

Now Theorem A1 follows easily from these facts and the next result. (Compare Weibel [30, 3.6.5].

Theorem A2

Let \(P_\bullet \) be a chain complex of projective R–modules. Then, for any n, there exists an isomorphism

$$\begin{aligned} H^n(\mathrm {Hom}_R(P,R)) \cong \mathrm {Hom}_R(H_n(P),R). \end{aligned}$$

Proof

Consider the short exact sequences

$$\begin{aligned} 0 \longrightarrow Z_n \longrightarrow P_n \longrightarrow dP_n \longrightarrow 0, \end{aligned}$$

whence

$$\begin{aligned} 0 \longrightarrow \mathrm {Hom}(dP_n,R)\longrightarrow \mathrm {Hom}(P_n,R) \longrightarrow \mathrm {Hom}(Z_n,R) \longrightarrow 0 \end{aligned}$$

since \(\mathrm {Ext}^1(dP_n,R)=0\) as R is injective. This defines an exact sequence of (cochain) complexes, with the dual differential. Consider the cohomology. We obtain exact sequences :

$$\begin{aligned} \cdots&\rightarrow H^{n-1} (\mathrm {Hom}(Z,R))\rightarrow H^n(\mathrm {Hom}(dP,R)) \rightarrow H^n(\mathrm {Hom}(P,R)) \rightarrow \\&\rightarrow H^n(\mathrm {Hom}(Z,R)\rightarrow H^{n+1}(\mathrm {Hom}(dP,R))\rightarrow \cdots \end{aligned}$$

and the differentials for the complexes Z and \(d\,P\) being zero :

$$\begin{aligned} \cdots&\rightarrow \mathrm {Hom}(Z_{n-1},R) \rightarrow \mathrm {Hom}(dP_n,R) \rightarrow H^n(\mathrm {Hom}(P,R)) \rightarrow \\&\rightarrow \mathrm {Hom}(Z_n,R)\rightarrow \mathrm {Hom}(dP_{n+1},R))\rightarrow \cdots \end{aligned}$$

However, the exact sequence

$$\begin{aligned} 0\longrightarrow d\, P_{n+1} \longrightarrow Z_n \longrightarrow H_n(P) \longrightarrow 0 \end{aligned}$$
(6)

yields

$$\begin{aligned} 0\rightarrow \mathrm {Hom}(H_n(P),R) \rightarrow \mathrm {Hom}(Z_n,R) \rightarrow \mathrm {Hom}(dP_{n+1},R) \rightarrow 0 \end{aligned}$$

since \(\mathrm {Ext}^1(H_n(P),R)=0\) ; shifting the indices by 1 in (6) we also get

$$\begin{aligned} \mathrm {Hom}(Z_{n-1},R) \longrightarrow \mathrm {Hom}(dP_n,R)\longrightarrow 0. \end{aligned}$$

Finally, the last long exact sequence implies

$$\begin{aligned} H^n(\mathrm {Hom}(P,R)) \overset{}{\underset{\approx }{\longrightarrow }} \mathrm {Hom}(H_n(P),R). \end{aligned}$$

It is now easy to derive Theorem A1. We take \(P_\bullet =S_\bullet (X)\) be the simplicial chain complex of X with coefficients in R ; \(\mathrm {Hom}(P_\bullet ,R)\) is the simplicial cochain complex. We have the isomorphisms

$$\begin{aligned} H^i(X,R)&\cong \mathrm {Hom}(H_i(X),R), \,\alpha \mapsto h_\alpha \\ D:H_c^i(X,R)&\cong H_{d-i}(X,R), \,\beta \mapsto D\beta , \end{aligned}$$

and we set for \(\alpha \in H^i\), \(\beta \in H_c^{d-i}\) :

$$\begin{aligned} <\alpha ,\beta > = h_\alpha (D\beta ) \in R. \end{aligned}$$

Property (5) now implies that the pairing is non–degenerate (in both variables).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clozel, L. On the Eisenstein functoriality in cohomology for maximal parabolic subgroups. Sel. Math. New Ser. 28, 80 (2022). https://doi.org/10.1007/s00029-022-00794-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00794-y

Mathematics Subject Classification

Navigation