Skip to main content
Log in

Schottky spaces and universal Mumford curves over \({\mathbb {Z}}\)

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

For every integer \(g \ge 1\) we define a universal Mumford curve of genus g in the framework of Berkovich spaces over \({\mathbb {Z}}\). This is achieved in two steps: first, we build an analytic space \({{\mathcal {S}}}_g\) that parametrizes marked Schottky groups over all valued fields. We show that \({{\mathcal {S}}}_g\) is an open, connected analytic space over \({\mathbb {Z}}\). Then, we prove that the Schottky uniformization of a given curve behaves well with respect to the topology of \({{\mathcal {S}}}_g\), both locally and globally. As a result, we can define the universal Mumford curve \({{\mathcal {C}}}_g\) as a relative curve over \({{\mathcal {S}}}_g\) such that every Schottky uniformized curve can be described as a fiber of a point in \({{\mathcal {S}}}_g\). We prove that the curve \({{\mathcal {C}}}_g\) is itself uniformized by a universal Schottky group acting on the relative projective line \(\mathbb {P}^1_{{{\mathcal {S}}}_g}\). Finally, we study the action of the group \(\hbox {Out}(F_g)\) of outer automorphisms of the free group with g generators on \({{\mathcal {S}}}_g\), describing the quotient \(\hbox {Out}(F_g) \backslash {{\mathcal {S}}}_g\) in the archimedean and non-archimedean cases. We apply this result to compare the non-archimedean Schottky space with constructions arising from geometric group theory and the theory of moduli spaces of tropical curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. A complete account of the results and the mathematicians that made this breakthrough possible is given with detailed proofs in the impressive collective work [16].

  2. For more details and a discussion of higher dimensional skeletons, we refer the reader to the excellent survey by Werner [50].

  3. Recall from [3, 4.1.3] that the skeleton of an analytic curve C is defined as the subset of C consisting of those points that do not have a neighborhood potentially isomorphic to a disc. If C is the analytification of a smooth proper algebraic curve, its skeleton is a finite graph and this definition coincides with the one at the end of Notation 4.2.2.

  4. The property “smooth of relative dimension 1” has been recently defined in [6, Définition 9.2]. More concretely, in our case the fibration \(\psi \) is locally isomorphic to the relative line.

References

  1. Ahlfors, L.V., Bers, L.: Riemann’s mapping theorem for variable metrics. Ann. Math. 2(72), 385–404 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bers, L.: Automorphic forms for Schottky groups. Adv. Math. 16, 332–361 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berkovich, V.G.: Spectral Theory and Analytic Geometry over Non-Archimedean Fields. Mathematical Surveys and Monographs, vol. 33. American Mathematical Society, Providence (1990)

    Google Scholar 

  4. Berkovich, V.G.: Étale cohomology for non-Archimedean analytic spaces. Inst. Hautes Études Sci. Publ. Math. 78, 5–161 (1994), 1993

  5. Berkovich, V.G: A non-Archimedean interpretation of the weight zero subspaces of limit mixed Hodge structures. In: Algebra, Arithmetic, and Geometry: In Honor of Yu. I. Manin. Vol. I, volume 269 of Progr. Math., pp. 49–67. Birkhäuser Boston Inc., Boston (2009)

  6. Berger, D.: Espaces de Berkovich sur \(\mathbb{Z}\): morphismes étales (2022). arXiv:2112.02907

  7. Bosch, S., Güntzer, U., Remmert, R.: Non-Archimedean Analysis, volume 261 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin (1984). A systematic approach to rigid analytic geometry

  8. Boucksom, S., Jonsson, M.: Tropical and non-Archimedean limits of degenerating families of volume forms. J. Éc. polytech. Math. 4, 87–139 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brannetti, S., Melo, M., Viviani, F.: On the tropical Torelli map. Adv. Math. 226(3), 2546–2586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bourbaki, Nicolas: Éléments de mathématique. Topologie générale. Chapitres 1 à 4. Hermann, Paris (1971)

  11. Caporaso, L.: Algebraic and tropical curves: comparing their moduli spaces. In: Farkas, G., Morrison, I. (eds.) Handbook of Moduli, Volume I., pp. 119–160. Advanced Lectures in Mathematics, Volume XXIV (2013)

  12. Cartan, H.: Quotient d’un espace analytique par un groupe d’automorphismes. Princeton Math. Ser. 12, 90–102 (1957)

    MathSciNet  MATH  Google Scholar 

  13. Chan, M., Melo, M., Viviani, F.: Tropical Teichmüller and Siegel spaces. In: Algebraic and Combinatorial Aspects of Tropical Geometry, volume 589 of Contemp. Math., pp. 45–85. American Mathematical Society, Providence (2013)

  14. Culler, M., Vogtmann, K.: Moduli of graphs and automorphisms of free groups. Invent. Math. 84(1), 91–119 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. DeMarco, L., Krieger, H., Ye, H.: Uniform Manin-Mumford for a family of genus 2 curves. Ann. Math. (2) 191(3), 949–1001 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. de Saint-Gervais, H.P.: Uniformisation des surfaces de Riemann. Retour sur un théorème centenaire. ENS Éditions, p. 544 (2010)

  17. Ducros, A.: La structure des courbes analytiques. Manuscript available at http://www.math.jussieu.fr/~ducros/trirss.pdf

  18. Favre, C.: Degeneration of endomorphisms of the complex projective space in the hybrid space. J. Inst. Math. Jussieu 19(4), 1141–1183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gardiner, F.P.: Teichmüller Theory and Quadratic Differentials. Wiley, New York (1987)

    MATH  Google Scholar 

  20. Gerritzen, L.: Zur nichtarchimedischen Uniformisierung von Kurven. Math. Ann. 210, 321–337 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gerritzen, L.: Zur analytischen Beschreibung des Raumes der Schottky-Mumford-Kurven. Math. Ann. 255(2), 259–271 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gerritzen, L.: \(p\)-adic Teichmüller space and Siegel halfspace. Groupe de travail d’analyse ultramétrique, 9(2), 1981–1982. talk:26

  23. Gerritzen, L., Herrlich, F.: The extended Schottky space. J. Reine Angew. Math. 389, 190–208 (1988)

    MathSciNet  MATH  Google Scholar 

  24. Gerritzen, L., van der Put, M.: Schottky Groups and Mumford Curves. Lecture Notes in Mathematics, vol. 817. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

  25. Harbater, D.: Galois covers of an arithmetic surface. Am. J. Math. 110(5), 849–885 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hejhal, D.A.: On Schottky and Teichmüller spaces. Adv. Math. 15(2), 133–156 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  27. Herrlich, F.: On the stratification of the moduli space of Mumford curves. Groupe de travail d’analyse ultramétrique 11:1–10, 1983–1984

  28. Herrlich, F.: Moduli for stable marked trees of projective lines. Math. Ann. 291(1), 643–661 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hidalgo, R.A.: Automorphism groups of Schottky type. Ann. Acad. Sci. Fenn. Math. 30(1), 183–204 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Herrlich, F., Schmithüsen, G.: On the boundary of Teichmüller disks in Teichmüller and in Schottky space. In: Handbook of Teichmüller theory I, pp. 293–349. European Mathematical Society (2007)

  31. Ichikawa, T.: Generalized Tate curve and integral Teichmüller modular forms. Am. J. Math. 122(6), 1139–1174 (2000)

    Article  MATH  Google Scholar 

  32. Ichikawa, T.: Universal periods of hyperelliptic curves and their applications. J. Pure Appl. Algebra 163(3), 277–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ichikawa, T.: Klein’s formulas and arithmetic of Teichmüller modular forms. Proc. Am. Math. Soc. 146(12), 5105–5112 (2018)

    Article  MATH  Google Scholar 

  34. Ichikawa, T.: Periods of generalized Tate curves (2020). arXiv:1909.10149

  35. Ichikawa, T.: The universal Mumford curve and its periods in arithmetic formal geometry (2020). arXiv:2010.11517

  36. Jørgensen, T., Marden, A., Maskit, B.: The boundary of classical Schottky space. Duke Math. J. 46(2), 441–446 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lemanissier, T., Poineau, J.: Espaces de Berkovich sur \(\mathbf{Z}\) : catégorie, topologie, cohomologie (2020). arXiv:2010.08858

  38. Marden, A.: The geometry of finitely generated Kleinian groups. Ann. Math. 99, 383–462 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  39. Marden, A.: Schottky groups and circles. In: Contributions to Analysis, pp. 273–278. Academic Press, New York (1974)

  40. Maskit, B.: A characterization of Schottky groups. Journal d’Analyse Mathématique 19(1), 227–230 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  41. Mumford, D., Series, C., Wright, D.: Indra’s Pearls. The Vision of Felix Klein. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  42. Mumford, D.: An analytic construction of degenerating curves over complete local rings. Compositio Math. 24, 129–174 (1972)

    MathSciNet  MATH  Google Scholar 

  43. Poineau, J.: La droite de Berkovich sur \(\mathbf{Z}\). Astérisque 334, xii+284 (2010)

  44. Poineau, J.: Raccord sur les espaces de Berkovich. Algebra Number Theory 4(3), 297–334 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  45. Poineau, J.: Espaces de Berkovich sur \(\mathbf{Z}\) : étude locale. Invent. Math. 194(3), 535–590 (2013)

  46. Poineau, J., Turchetti, D.: Berkovich curves and Schottky uniformization. II: Analytic uniformization of Mumford curves. In: Arithmetic and geometry over local fields. VIASM 2018. Based on lectures given during the program “Arithmetic and geometry of local and global fields”, summer 2018, Hanoi, Vietnam, pp. 225–279. Springer, Cham (2021)

  47. Serre, J.-P.: Arbres, amalgames, \(\text{SL}_{2}\). Astérisque, No. 46. Société Mathématique de France, Paris. Avec un sommaire anglais, Rédigé avec la collaboration de Hyman Bass (1977)

  48. Ulirsch, M.: A non-Archimedean analogue of Teichmüller space and its tropicalization. Sel. Math. New Ser. 27(3), 39 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  49. Vogtmann, K.: On the geometry of outer space. Bull. Am. Math. Soc. 52, 27–46 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Werner, A.: Analytification and tropicalization over non-Archimedean fields. In: Baker, M., Payne, S. (eds) Nonarchimedean and Tropical Geometry, pp. 145–171. Springer, Berlin (2016)

  51. Yamamoto, H.: An example of a nonclassical Schottky group. Duke Math. J. 63(1), 193–197 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We warmly thank Melody Chan, Frank Herrlich, Fabian Ruoff, Thibaud Lemanissier, Marco Maculan, and the anonymous referee for stimulating mathematical exchanges that improved a preliminary version of this paper. We are especially grateful to Sam Payne who raised to us the question answered by Theorem 6.2.2 and to Martin Ulirsch for sharing with us a preliminary version of his work [48].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Poineau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poineau, J., Turchetti, D. Schottky spaces and universal Mumford curves over \({\mathbb {Z}}\). Sel. Math. New Ser. 28, 79 (2022). https://doi.org/10.1007/s00029-022-00793-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00793-z

Keywords

Mathematics Subject Classification

Navigation