Skip to main content
Log in

The Schwarz-Milnor lemma for braids and area-preserving diffeomorphisms

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove a number of new results on the large-scale geometry of the \(L^p\)-metrics on the group of area-preserving diffeomorphisms of each orientable surface. Our proofs use in a key way the Fulton-MacPherson type compactification of the configuration space of n points on the surface due to Axelrod-Singer and Kontsevich. This allows us to apply the Schwarz-Milnor lemma to configuration spaces, a natural approach which we carry out successfully for the first time. As sample results, we prove that all right-angled Artin groups admit quasi-isometric embeddings into the group of area-preserving diffeomorphisms endowed with the \(L^p\)-metric, and that all Gambaudo-Ghys quasi-morphisms on this metric group coming from the braid group on n strands are Lipschitz. This was conjectured to hold, yet proven only for small values of n and g, where g is the genus of the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. “Schwarz” is a transliteration from Russian; alternative spellings “Švarc”, “Schwartz” sometimes appear in the literature.

  2. It is curious to note that the same is not true for the action of \(\mathrm {Homeo}(M)\) as was recently proven [42].

References

  1. Arnold, V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319–361 (1966)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I., Khesin, B.A.: Topological Methods In Hydrodynamics, Applied Mathematical Sciences, vol. 125, Springer, Berlin (1998)

  3. Axelrod, S., Singer, I.M.: Chern-Simons perturbation theory. II. J. Differential Geom. 39(1), 173–213 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Benaim, M., Gambaudo, J.-M.: Metric properties of the group of area preserving diffeomorphisms. Trans. Amer. Math. Soc. 353(11), 4661–4672 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Birman, J.S.: Mapping class groups and their relationship to braid groups. Comm. Pure Appl. Math. 22, 213–238 (1969)

    MathSciNet  MATH  Google Scholar 

  6. Brandenbursky, M.: On quasi-morphisms from knot and braid invariants. J. Knot Theory Ramifications 20(10), 1397–1417 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Brandenbursky, M.: Quasi-morphisms and \({L}^p\)-metrics on groups of volume-preserving diffeomorphisms. J. Topol. Anal. 4(2), 255–270 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Brandenbursky, M.: Bi-invariant metrics and quasi-morphisms on groups of Hamiltonian diffeomorphisms of surfaces. Internat. J. Math. 26, 1550066 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Brandenbursky, M., Kȩdra, J.: On the autonomous norm on the group of area-preserving diffeomorphisms of the 2-disc, Algebr. Geom. Topol. 13, 795–816 (2013)

    MATH  Google Scholar 

  10. Brandenbursky, M., Kȩdra, J.: Quasi-isometric embeddings into diffeomorphism groups. Groups, Geometry and Dynamics 7(3), 523–534 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Brandenbursky, M., Kedra, J., Shelukhin, E.: On the autonomous norm on the group of Hamiltonian diffeomorphisms of the torus. Commun. Contemp. Math. 20(2), 1750042 (2018)

    MathSciNet  MATH  Google Scholar 

  12. Brandenbursky, M., Marcinkowski, M.: Entropy and quasimorphisms. J. Mod. Dyn. 15, 143–163 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Brandenbursky, M., Shelukhin, E.: On the \({L}^p\)-geometry of autonomous Hamiltonian diffeomorphisms of surfaces. Math. Res. Lett. 22(5), 1275–1294 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Brandenbursky, M., Shelukhin, E.: The \(L^p\)-diameter of the group of area-preserving diffeomorphisms of \(S^2\). Geom. Topol. 21(6), 3785–3810 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Bridson, M.R., Haefliger, A.: Metric Spaces Of Non-positive Curvature, Grundlehren Der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)

  16. Calabi, E.: On the group of automorphisms of a symplectic manifold. Problems in analysis (Lectures at the Sympos. in honor of Salomon Bochner, Princeton Univ., Princeton, N.J., 1969), pp. 1–26. Princeton Univ. Press, Princeton, N.J., 1970

  17. Calegari, D.: Scl, Msj Memoirs, vol. 20. Mathematical Society of Japan, Tokyo (2009)

    MATH  Google Scholar 

  18. Crisp, J., Wiest, B.: Quasi-isometrically embedded subgroups of braid and diffeomorphism groups. Trans. Amer. Math. Soc. 359(11), 5485–5503 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Ebin, D.G., Misiołek, G., Preston, S.C.: Singularities of the exponential map on the volume-preserving diffeomorphism group. Geom. Funct. Anal. 16(4), 850–868 (2006)

    MathSciNet  MATH  Google Scholar 

  20. David, G.: Ebin, Geodesics on the symplectomorphism group. Geom. Funct. Anal. 22(1), 202–212 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Ebin, D.G., Marsden, J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. of Math. (2) 92, 102–163 (1970)

    MathSciNet  MATH  Google Scholar 

  22. Efremovič, V.: The proximity geometry of Riemannian manifolds. Uspehi Mat. Nauk 8(5), 57 (1953)

  23. Eliashberg, Y., Ratiu, T.: The diameter of the symplectomorphism group is infinite. Invent. Math. 103(2), 327–340 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Fathi, A.: Transformations Et Homéomorphismes Préservant La Mesure. Systèmes dynamiques minimaux, Ph.D. thesis, Orsay (1980)

    Google Scholar 

  25. Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann. of Math. (2) 139(1), 183–225 (1994)

    MathSciNet  MATH  Google Scholar 

  26. Gambaudo, J.-M., Pécou, E.E.: Dynamical cocycles with values in the Artin braid group. Ergodic Theory Dynam. Systems 19(3), 627–641 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Gambaudo, J.-M., Ghys, É.: Enlacements asymptotiques. Topology 36(6), 1355–1379 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Gambaudo, J.-M., Ghys, É.: Commutators and diffeomorphisms of surfaces. Ergodic Theory Dynam. Systems 24(5), 1591–1617 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Gambaudo, J.-M., Lagrange, M.: Topological lower bounds on the distance between area preserving diffeomorphisms. Bol. Soc. Brasil. Mat. (N.S.) 31(1), 9–27 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Goldberg, C.H.: An exact sequence of braid groups. Math. Scand. 33, 69–82 (1973)

    MathSciNet  MATH  Google Scholar 

  31. Haïssinsky, P.: L’invariant de Calabi pour les homéomorphismes quasiconformes du disque. C. R. Math. Acad. Sci. Paris 334(8), 635–638 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Hamenstadt, U.: Geometry of the mapping class group II: A biautomatic structure, Preprint arXiv:0912.0137, (2009)

  33. Humilière, V.: The Calabi invariant for some groups of homeomorphisms. J. Symplectic Geom. 9(1), 107–117 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Ishida, T.: Quasi-morphisms on the group of area-preserving diffeomorphisms of the 2-disk via braid groups. Proc. Amer. Math. Soc. Ser. B 1, 43–51 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Kapovich, M.: RAAGs in Ham. Geom. Funct. Anal. 22(3), 733–755 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Kassel, C., Turaev, V.: Braid Groups, Graduate Texts in Mathematics, vol. 247. Springer, New York (2008)

  37. Khanevsky, M.: Quasimorphisms on surfaces and continuity in the Hofer norm, Preprint, arXiv:1906.08429, (2019)

  38. Khesin, B., Wendt, R.: The geometry of infinite-dimensional groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 51, Springer-Verlag, Berlin, (2009)

  39. Kim, S., Koberda, T.: Anti-trees and right-angled Artin subgroups of braid groups. Geom. Topol. 19(6), 3289–3306 (2015)

    MathSciNet  MATH  Google Scholar 

  40. Kontsevich, M.: Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992), Progr. Math., vol. 120, Birkhäuser, Basel, 97–121 (1994)

  41. Kontsevich, M.: Operads and motives in deformation quantization. Moshé Flato (1937–1998). Lett. Math. Phys. 48 (1), 35–72 (1999)

  42. Kupers, A.: There is no topological Fulton-MacPherson compactification, Preprint, arXiv:2011.14855, (2020)

  43. Marcinkowski, M.: A short proof that the \(L^p\)-diameter of \(Diff_0(S,area)\) is infinite. Algebr. Geom. Topol., to appear. Available at arXiv:2010.03000

  44. Milnor, J.: A note on curvature and fundamental group. J. Differential Geometry 2, 1–7 (1968)

    MathSciNet  MATH  Google Scholar 

  45. Polterovich, L.: The Geometry Of The Group Of Symplectic Diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhaüser, Basel (2001)

  46. Polterovich, L.: Floer homology, dynamics and groups, Morse theoretic methods in nonlinear analysis and in symplectic topology (Dordrecht), NATO Sci. Ser. II Math. Phys. Chem., vol. 217, Springer, pp. 417—438 (2006)

  47. Py, P.: Quasi-morphismes de Calabi et graphe de Reeb sur le tore. C. R. Math. Acad. Sci. Paris 343(5), 323–328 (2006)

    MathSciNet  MATH  Google Scholar 

  48. Py, P.: Quasi-morphismes et invariant de Calabi. Ann. Sci. École Norm. Sup. (4) 39(1), 177–195 (2006)

  49. Shelukhin, E.: “Enlacements asymptotiques’’ revisited. Ann. Math. Qué. 39(2), 205–208 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Shnirelman, A.: The geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid. Mat. Sb. 128(170)(1), 82–109 (1985)

    MathSciNet  Google Scholar 

  51. Shnirelman, A.: Generalized fluid flows, their approximation and applications. Geom. Funct. Anal. 4(5), 586–620 (1994)

    MathSciNet  MATH  Google Scholar 

  52. Shnirelman, A.: Microglobal analysis of the Euler equations. J. Math. Fluid Mech. 7(suppl. 3), S387–S396 (2005)

    MathSciNet  MATH  Google Scholar 

  53. Sinha, D.P.: Manifold-theoretic compactifications of configuration spaces. Selecta Math. (N.S.) 10(3), 391–428 (2004)

    MathSciNet  MATH  Google Scholar 

  54. Smale, S.: Diffeomorphisms of the 2-sphere. Proc. Amer. Math. Soc. 10(4), 621–626 (1959)

    MathSciNet  MATH  Google Scholar 

  55. Švarc, A.S.: A volume invariant of coverings. Dokl. Akad. Nauk SSSR 105, 32–34 (1955)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

MB was partially supported by Humboldt Research Fellowship. MM was partially supported by NCN (Sonatina 2018/28/C/ST1/00542) and by the GAČR project 19-05271Y and by RVO: 67985840. ES was partially supported by an NSERC Discovery Grant, by the Fondation Courtois, and by a Sloan Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Egor Shelukhin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandenbursky, M., Marcinkowski, M. & Shelukhin, E. The Schwarz-Milnor lemma for braids and area-preserving diffeomorphisms. Sel. Math. New Ser. 28, 74 (2022). https://doi.org/10.1007/s00029-022-00784-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00784-0

Mathematics Subject Classification

Navigation