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Abstract
Weuse techniques fromGromov–Witten theory to construct new invariants ofmatroids
taking value in the Chow groups of spaces of rational curves in the permutohedral
toric variety. When the matroid is realizable by a complex hyperplane arrangement,
our invariants coincide with virtual fundamental classes used to define the logarithmic
Gromov–Witten theory of wonderful models of arrangement complements, for any
logarithmic structure supported on the wonderful boundary. When the boundary is
empty, this implies that the quantum cohomology ring of a hyperplane arrangement’s
wonderful model is a combinatorial invariant, i.e., it depends only on the matroid.
When the boundary divisor is maximal, we use toric intersection theory to convert
the virtual fundamental class into a balanced weighted fan in a vector space, having
the expected dimension. We explain how the associated Gromov–Witten theory is
completely encoded by intersections with this weighted fan. We include a number of
questions whose positive answers would lead to awell-definedGromov–Witten theory
of non-realizable matroids.

Mathematics Subject Classification 14N35 · 14T20 · 14N20

1 Introduction

The purpose of this article is to use the logarithmic Gromov–Witten theory of won-
derful compactifications to construct new invariants of matroids. Our main results are
the construction of a canonical quantum deformation of the Chow ring of a realiz-
able matroid and a tropical correspondence theorem for virtual counts of logarithmic
rational curves on arrangement complements.
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1.1 Wonderful geometry of the permutohedron

The theory of matroids is intimately related to the toric variety associated to the
permutohedron. A geometric development of the basic theory of matroids and this
relationship can be found in the article of Katz [31].

A loop-free matroid M of rank d +1 on {0, . . . , n} determines a d-dimensional uni-
modular fan�M in the vector spaceRn+1/R(1, . . . , 1), called the projective Bergman
fan1 of M . We set �n = �Bn+1 , where the Boolean matroid Bn+1 is the uniform rank
n + 1 matroid on {0, . . . , n}. Concretely, the fan �n is the normal fan to the permu-
tohedron, the first barycentric subdivision of the fan of Pn , and �M is a subfan of
�n .

SupposeA is a hyperplane arrangement in Pd realizing M . By linear algebra, there
is an essentially unique inclusion P

d ↪→ P
n such that A consists of the restriction

to P
d of the coordinate hyperplanes. A famous construction of de Concini–Procesi

constructs a modification of Pd

ι : WA ↪→ X(�n),

as follows [13]. The variety X(�n) is the toric variety associated to the fan �n , and
explicitly, can be recognized as the blowup of Pn along coordinate strata in increasing
order of dimension. The variety WA is the strict transform of Pd and is called the
wonderful model. The key property of the construction is that the restriction of the
toric boundary ∂ X(�n) is a simple normal crossings divisor on WA. We write ∂WA

for this divisor.
Let DX ⊂ ∂ X(�n) be any union of toric boundary divisors and let DW ⊂ ∂WA be

the intersection with WA. Logarithmic Gromov–Witten theory probes the geometry
of a simple normal crossings pairs by maps from curves with tangency along DX . The
central object for us is the moduli space of genus 0 logarithmic stable maps K�(WA)

and the corresponding space K�(X(�n)). The symbol � encodes the numerical data
of the Gromov–Witten problem, which selects (i) the divisor DX , (ii) the curve class,
(iii) the tangency data, see Sect. 2.2.

1.2 Main results

In the main body, we construct a Chow homology class

[M]vir� in A�K�(X(�n)).

associated to any, possibly non-realizable, matroid and a choice of numerical data �.
Our first result is that when the matroid M is realizable over the complex numbers,
this class coincides with a familiar class from Gromov–Witten theory. We preserve
the notation above for the statement of the theorem.

Theorem A Let M be a rank d+1matroid on {0, . . . , n}, letAbe a complex hyperplane
arrangement in P

d realizing M, and let WA be the wonderful model with respect to

1 The Bergman fans in this paper will be taken with respect to the maximal building set, see [13, 15].
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the maximal building set of A. Let ι : WA ↪→ X(�n) is the inclusion of the wonderful
model into the permutohedral toric variety, and

K�(ι) : K�(WA) ↪→ K�(X(�n))

the induced morphism of stable mapping spaces, obtained by composing a stable map
with the inclusion ι. Then

K�(ι)�[K�(WA)]vir = [M]vir�

for any choice of numerical data �.

It is useful to place this result in the context of other household invariants of arrange-
ment complements. For example, the fundamental group of the complement of an
arrangement is not a combinatorial invariant [44]. The combinatorial invariance is
also non-obvious from the point of view of Gromov–Witten theory which is deforma-
tion invariant by construction. The space of arrangements realizing a given matroid,
its realization space, can be highly disconnected, and therefore, the result goes signif-
icantly beyond the deformation invariance of Gromov–Witten theory.

The class [M]vir� can be taken as the definition of the logarithmic Gromov–Witten
virtual fundamental class when M does not have a realization, after pushforward to
the space of maps to X(�n). However, it is not immediate that the Gromov–Witten
invariants of M are well defined, see Sect. 5.

A straightforward consequence of the result is that the quantum cohomology of the
wonderful model of a complex arrangement is a matroid invariant, giving a quantum
deformation of the result of Feichtner and Yuzvinsky [15]. In the statement of the
next theorem, fix a polarization of X(�n) and give WA1 and WA2 the polarizations
induced by their inclusions into X(�n). We consider the quantum cohomology with
respect to these polarizations.

Theorem B LetA1,A2 be hyperplane arrangements inPd , and let WA1 , WA2 be their
wonderful models with respect to the maximal building set, respectively. If A1 and A2
have the same underlying matroid, then

Q H �(WA1)
∼= Q H �(WA2).

When the boundary DX is the toric boundary, the theory becomes combinatorial.
Fixing this logarithmic structure, there is an associated tropical space T�(�n) parame-
terizing tropical rational curves with a balanced map to �n . Consider the subcomplex
T�(�M ) of curves in�M . Note that this is typically not pure dimensional. In Sect. 4.3,
we construct a balancedweighted subfan c�(M) of T�(�n) of the expected dimension.
We show that c�(M) completely controls the Gromov–Witten theory of M .

Theorem C (Tropical virtual fundamental class) If M admits a realization by a com-
plex hyperplane arrangement with wonderful model W , then the subcomplex c�(M)

is a union of cones of T�(�M ) of the expected dimension. Moreover, the logarithmic
Gromov–Witten theory of (W , ∂W ) with numerical data � can be uniquely recon-
structed from the weighted balanced fan c�(M).
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The reconstruction procedure is explained in Sect. 4.4. First examples of the object
c�(M) are given in Sect. 4.6. The result generalizes the correspondence theorem for
rational curves in toric varieties, proved at the level of moduli spaces in [8, 39].

The virtual fundamental classes of matroids have properties that are reminiscent
of familiar matroid invariants. Given a subdivision of the matroid polytope of M , the
virtual fundamental classes of thematroid M and the initial matroids of the subdivision
are related by the degeneration formula [40]. Similarly, the virtual fundamental classes
of a direct sum of matroids can be related to those of the factors [41]. We expect these
will be important properties in the further study of matroid Gromov–Witten theory. It
is important to note, however, that the virtual fundamental classes are neither valuative
nor satisfy a product rule for direct sums in the traditional sense.

When ∂W is the full wonderful boundary, the virtual fundamental class has an
additional pleasant property. We have constructed matroid virtual fundamental classes
using the wonderful compactification with respect to the maximal building set, in the
sense of [13], however, when ∂W is the wonderful boundary, the birational invariance
of the logarithmic Gromov–Witten classes implies that the complex c�(M) depends
only on the support of �M in �n , rather than on the additional data of its fan struc-
ture [2].

1.3 Previous work

Our work is inspired by interactions between matroid theory and algebraic geometry.
The Chow ring of a matroid was introduced by Feichtner and Yuzvinsky, as the Chow
ring of a certain non-complete toric variety, building on work of de Concini and
Procesi [13, 15]. Thematroid Chow ring hasmany of the properties of the cohomology
ring of a smooth projective algebraic variety, as was shown inwork of Adiprasito, Huh,
and Katz [3]. Our results show that in the realizable case, the cohomology ring admits
a canonical quantum deformation, and we believe that such a deformation should
always exist, see Sect. 5.

The purely combinatorial matroid virtual fundamental class c�(M) should be com-
pared to tropical correspondence theorems proved in [38] for toric varieties. If the
Bergman fan �M is a vector space, the result reduces to [22, 23, 38, 39]. We note that
an independent and interesting approach to constructing polyhedral complexes that
resemble virtual fundamental classes is pursued by Gathmann, Markwig, and Ochse
in [19, 20]. It would be interesting to examine how their approach relates to ours.

The idea of constructing a Gromov–Witten theory purely in the world of matroids
has spiritual parallels. For example, the Chern–Schwarz–Macpherson class of a
matroid is a balanced tropical cycle that recovers the CSM classes of complex arrange-
ment complements [14]. Speyer constructed an invariant of a matroid by associating
to it the K -theory class of the structure sheaf of an associated torus orbit closure in a
Grassmannian [45]; its properties were studied further by Fink and Speyer [16]. The
Chow and K -theory of matroids are connected by a beautiful recent paper of Berget,
Eur, Spink, and Tseng [5], who connect wonderful models of matroids to equivari-
ant vector bundles on toric varieties. In fact, this construction plays a crucial role in
our study. In related work, Dastidar and Ross have defined matroid ψ–classes, treat-
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ing the Chow ring of a matroid as analogous to the moduli space of pointed rational
curves [12].

When M is complex realizable, the points of the tropical cycle c�(M) parameterize
maps from tropical rational curves in�M . In the special case where the degree of these
rational curves is 1, one obtains spaces of tropical lines in tropical linear spaces, which
can be interpreted as a tropical Fano variety, or as a tropical flag manifold [6, 27, 34].
Our results may therefore be viewed as a non-linear partial generalization of these.

Finally, our results fundamentally concern integrals on the space of stable maps to
the permutohedral toric variety, which is also the subject of the papers [7, 21, 29].

2 Virtual fundamental classes of wonderful models

Wework over an algebraically closed field of characteristic 0 and construct the virtual
classes of matroids. The section involves three ingredients: the tautological vector
bundle cutting out the wonderful model of a matroid [5], the Grothendieck–Riemann–
Roch theorem [10], and the functoriality of the virtual fundamental class [33]. They
will be combined to obtain a combinatorial formula for the virtual fundamental class
of a wonderful model for a complex arrangement complement.

2.1 Conventions on logarithms

We prefer to work here over the category of fine logarithmic schemes rather than the
more common convention of fine and saturated logarithmic schemes used in [1, 9, 24].
The geometric reason for this is that natural forgetful map

K�(X) → M0,r (X , β)

to the moduli space of ordinary stable maps is an embedding in the fine case, but is
finite in the fine and saturated case. For statements that require a global embedding
into a smooth object, the former is more convenient. The literature does not use the
saturation hypothesis in a significant way, and it is easily excised without affecting
the Gromov–Witten theory. As this is a technical discussion and likely well-known to
experts, we delay this to Sect. 2.7.

2.2 Conventions on discrete data

Let X be a smooth projective variety and D a simple normal crossings divisor with
components D1, . . . , Ds . Logarithmic Gromov–Witten theory probes the geometry
of a simple normal crossings pair (X , D) by the intersection theory on moduli spaces
K(X , D) of logarithmic stable maps

F : (C, p1, . . . , pr ) → (X , D).

The domain is allowed to be any nodal pointed curve, and the morphism satisfies
a number of properties in addition to stability, which the reader may find in [24].
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We provide a working definition for the reader. The interior of the moduli space
parameterizesmaps such that F−1(D) is a collection ofmarked points. On this interior,
the curve C is smooth and the scheme theoretic order of tangency of F at each marked
point pi with each boundary component D j is a fixed nonnegative integer ci j . This
contact order is locally constant in flat families of logarithmic stable maps. The space
K(X , D) is a compact moduli space that contains this locus as an open substack. The
new objects in the moduli problem are logarithmic maps from nodal curves subject to
a stability condition. The fundamental property of the compact moduli space is that
the contact orders ci j are well-defined at every point in the moduli space K(X , D),
and moreover, the numbers ci j are still locally constant in flat families. The genus and
number of marked points r are also locally constant.

It is standard to fix the following discrete data when studying logarithmic Gromov–
Witten invariants: (i) the genus of the domain curve C , (ii) the number r of marked
points on the curve, (iii) the orders ci j of contact of each marked point pi with the
boundary divisor D j .

We depart from standard conventions and let � package the data of the choice of
boundary divisor D, the genus g, which will always be 0 for us, the number r of
marked points, and their contact orders. Let K�(X) be the associated moduli space of
logarithmic stablemaps. It is proved in [1, 9, 24] that this is a properDeligne–Mumford
stack of expected dimension

vdim = (dim X − 3)(1 − g) +
∫

β

c(T log
X ) + r

Themoduli space carries a canonical Chow homology class in this expected dimension
called the virtual fundamental class. Gromov–Witten invariants are defined as integrals
of tautologically defined cohomology classes on the moduli space against the virtual
fundamental class. In addition to the original papers, a gentle introduction to the subject
may be found in the introductory sections of [39].

2.3 Themoduli space

Suppose X is a smooth projective variety with a fixed simple normal crossings bound-
ary divisor DX . We consider a globally generated vector bundle E with a section s
such that the vanishing locus W = V(s) has the following properties.

(i) The subscheme W ⊂ X is smooth of codimension equal to the rank of of E.
(ii) The intersection W ∩ DX is a simple normal crossings divisor.
(iii) For each irreducible component Di of DX , if the intersection W ∩Di is nonempty

then it is smooth.

Remark 2.3.1 In our context, X will be the toric variety associated to the fan�n , which
is the normal fan of the n-dimensional permutohedron. The divisor DX ⊂ X will be
a subset of the toric boundary, which will later be fed into the discrete data �. The set
W will be the wonderful compactification of a hyperplane arrangement complement,
as constructed previously. The construction of the vector bundle will be explained
shortly.
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In this situation the divisor W ∩ DX is a simple normal crossings divisor, and the
natural map W ↪→ X is strict in the sense of logarithmic geometry. There is an induced
an inclusion of moduli spaces:

K�(W ) ↪→ K�(X).

The vector bundle E induces a sheaf on the moduli space by a universal push/pull
construction. Consider the universal diagram

C X

K�(X).

π

F

Define F to be the pushforward sheaf π�F�
E. In this context, the moduli space of

maps to X can be described using the sheaf F.

Theorem 2.3.2 The sheaf F is a vector bundle and possesses a section sF whose stack
theoretic vanishing locus is equal to the substack

K�(W ) ↪→ K�(X).

The Chern character of F is given by

ch(F) = π�(Td(π) · F� ch(E)).

Proof Let C be a rational curve, and consider a morphism

F : C → X .

We claim that the cohomology group H1(C, f �
E) vanishes. Indeed, by construction

the vector bundle E is a quotient of the trivial bundle; since the curve C has arithmetic
genus 0, the claim is immediate. We have the universal diagram

C X

K�(X).

π

F

Consider the pullback F�
E of the vector bundle E to the universal curve. The higher

cohomology groups of this vector bundle on the fibers of π have been shown to vanish.
By the theorem on cohomology and base change, the pushforward sheaf R0π�F�

E

is a vector bundle F. The section sE of E therefore gives rise to a section sF of the
vector bundle F. The scheme theoretic vanishing locus of sF tautologically describes
the subfunctor of K�(X) where the universal curve is scheme theoretically contained
in the vanishing locus of the section sE, namely in W . The first result follows.
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The second result follows from a standard application of Grothendieck–Riemann–
Roch, which will relate the Chern characters of the sheaves F�

E on the universal
curve, and of F. We briefly explain how to make the application. Since we work in the
category of fine logarithmic schemes, by a result of Wise, there is an embedding

K�(X) ↪→ M0,r (X , β),

into the space of ordinary stable maps, obtained by forgetting the logarithmic data [49,
Corollary 1.2]. Moreover, the universal curve of the source is pulled back from the
target of this map. The Grothendieck–Riemann–Roch theorem may be applied to the
universal curve, exactly as explained in [10, Appendix 1], and leads immediately to
the claimed result. ��

2.4 Logarithmic quantum Lefschetz

The moduli space of logarithmic stable maps K�(W ) carries a natural virtual fun-
damental class [24]. We examine this class after pushforward to the ambient space
K�(X). The description of the moduli space above as the zero locus of a bundle section
also produces a class, namely the virtual Poincaré dual to the Euler class of the bundle
F.

Theorem 2.4.1 The following equality holds in the Chow homology of K�(X):

[K�(W )]vir = ctop(F) ∩ [K�(X)]vir.

We recall how the virtual fundamental class on K�(W ) is constructed, following the
point of view given by Abramovich and Wise [2]. Let AX denote the Artin fan of X
with the logarithmic structure dictated by �. Explicitly, this is an open substack of the
quotient [X/T ] of X by its dense torus, consisting of torus orbits that are contained
in the logarithmic boundary of X . The stack AX is a simple normal crossings pair in
the smooth topology.

Lemma 2.4.2 The stack M(AX ) of logarithmic maps from curves to AX is logarith-
mically smooth. Fixing the genus to be g and the contact orders at all marked points
by the datum �, the stack Mg,�(AX ) of logarithmic maps with these discrete data is
irreducible of dimension 3g − 3 + n, where n is the number of marked points.

We work in the genus 0 case and drop the genus from the notation. The morphism
W ↪→ X is strict, and it follows that the Artin fan AW is an open substack of AX .
Concretely, it is the complement of those points of AX corresponding to torus orbits
that are disjoint from W . In particular

AW ↪→ AX

is a strict open immersion. The corresponding inclusion M�(AW ) ↪→ M�(AX ) is
also an open immersion. For the purposes of defining the virtual class below, we may
therefore ignore AW altogether and replace it with AX .
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The composite morphism W → X → AX has relative tangent bundle equal to the
logarithmic tangent bundle of W . The composition also gives rise to a map of moduli
spaces

μ : K�(W ) → M�(AX ).

The vertical tangent space whose fiber at a moduli point [C, f ] is given by
H0(C, f �T log

W ). The vertical obstruction space is given by H1(C, f �T log
W ). By the

Riemann–Roch theorem, the difference between these dimensions is everywhere con-
stant. A globalized version of this fact is that the forgetful morphism above is equipped
with a relative perfect obstruction theory, see [2, Section 6], noting as we have above
that M�(AW ) ↪→ M�(AX ) is an open immersion. In particular, there is a virtual
pullback morphism on the Chow group:

μ! : A�(M�(AX );Q) → A�(K�(W );Q).

Thevirtual pullback of the fundamental class gives rise to the virtual fundamental class.
If W is replaced with X above, the map μ is smooth; the pullback map coincides with
smooth pullback on Chow groups.

2.4.1 Proof of Theorem 2.4.1

The argument iswell-known in the non-logarithmic context, andweneedonlymanoeu-
vre ourselves into a situation where known results on virtual structures imply the
result [33]. By hypothesis the inlcusion W ↪→ X is a strict morphism of pairs: divi-
sorial components of ∂W are precisely the nonempty intersections of divisors of X
with W . It therefore follows that the relative cotangent complex of this morphism
coincides with the relative logarithmic cotangent complex. In particular, the kernel of
the morphism of logarithmic cotangent bundles is the usual conormal bundle W in X :

0 → N∨
W/X → �

log
X |W → �

log
W → 0.

Since W is cut out of X by a section of E, we have an identification of NW/X with the
vector bundle E|W . By pulling back this sequence to the universal curve over K�(W ),
taking its derived pushforward, and rotating, we obtain a distinguished triangle in the
derived category of coherent sheaves on K�(W ). By unraveling the definition of the
obstruction theory given above, we obtain a sequence of morphisms to the relative
cotangent complexes of our moduli spaces as described below. We let j : K�(W ) ↪→
K�(X) denote the inclusion.

j�(Rπ� F�T log
X )∨ (Rπ� F�T log

W )∨ j�F[1] j�(Rπ� F�T log
X )∨[1]

j�LK�(X)/M�(A X ) LK�(W )/M�(A X ) j�LK�(W )/K�(X)) j�LK�(X)/M�(A X )[1].
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It follows that the two different obstruction theories on K�(W ) – one coming from the
standard theory and the other from the vector bundle F, coincide; this statement now
follows from the result of Kim–Kresch–Pantev [33]; see also [35, Remark 5.17]. ��
Remark 2.4.3 The following variation on the above argument will be useful. We have
a sequence of morphisms

K�(W ) ↪→ K�(X) → M�(AX ).

The logarithmic algebraic stackM�(AX ) is equipped with a tropicalization [40, Sec-
tion
2]. Any subdivision of this tropicalization determines logarithmic modifications of
all three of these spaces. The logarithmic modifications of K�(W ) and K�(X) are both
equipped with virtual fundamental classes by [40, Section 3]. The argument above
ensures that the virtual fundamental classes of the modifications are still related by
the top Chern class of the vector bundle F above.

2.5 Specializing to the wonderful geometry

We now specialize to let X be the toric variety associated to the permutohedral fan
�n and let W be the wonderful model of a hyperplane arrangement complement. We
may exhibit W as a zero of a section of a vector bundle on X . The construction was
discovered by Berget–Eur–Spink–Tseng [5] and is closely related to [28, 46]. The
hyperplane arrangement underlying W canonically determines a point in a Grassman-
nian G(d, n). The Gn

m-orbit closure of this point determines a toric variety Y which
inherits the tautological quotient bundle fromG(d, n). There is a canonical resolution
X → Y , and the pullback of the tautological quotient bundle to X will be denoted E.

Let M be the matroid associated to the hyperplane arrangement above. Note that
it is a matroid on a set of n + 1 elements. The rank of the matroid is d + 1. We will
assume for convenience throughout that M is loop free. The divisor DX induces a
divisor DW on W by intersection. The divisor DX and the compatible divisor DW will
be implicit in � below.

Theorem 2.5.1 Let W and X be as above. The vector bundle E on X is globally
generated and possesses a transverse section sE whose scheme theoretic vanishing
locus is

W ↪→ X .

The total Chern class c(E) is equal to the tautological quotient total Chern class c(M)

of the matroid M.

The tautological quotient Chern classes of amatroid can be found in [5,Definition 3.
9].

Proof The bundle E is the tautological quotient bundle as defined in [5, Definition
1.2], which as a quotient of a trivial bundle, is globally generated. The existence of
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the section sE is [5, Theorem 7.10], and the statement about c(E) is an immediate
consequence of [5, Proposition 3.7]. ��

2.6 Virtual fundamental classes of matroids

Theorems 2.3.2, 2.4.1, and 2.5.1 together tell us that the image of [K�(W )]vir in the
Chow homology of K�(X) can be written in terms of the tautological quotient Chern
class c(M). We now make this explicit.

For i ∈ Z>0, let pi ∈ Q[x1, x2, . . . ] be recursively defined by

pi = x1 pi−1 − x2 pi−2 + · · · + (−1)i xi−1 p1 + (−1)i+1i xi ,

and for all j ∈ Z≥0, let κ�, j (M) be the degree j term of

π�

⎛
⎝Td(π) ·

⎛
⎝n − d +

∑
i≥1

pi

(
(F�(c
(M)))
∈Z>0

)⎞
⎠

⎞
⎠ ∈ A�(K�(X)).

Set e�(M) ∈ A�(K�(X)) to be

e�(M) = qdeg(c1(M)∩β)+n−d

(
(
!κ�,
(M))
∈Z>0

)
,

where β is the curve class encoded by �, and the qi ∈ Q[x1, x2, . . . ] are recursively
defined for i ∈ Z>0 by

(−1)i+1iqi = xi − xi−1q1 + xi−2q2 − · · · + (−1)i−1x1qi−1.

Definition 2.6.1 The virtual fundamental class of M with respect to � is the class

[M]vir� = e�(M) ∩ [K�(X)]vir ∈ A�(K�(X)).

Remark 2.6.2 Note that the definition [M]vir� depends only the discrete data � and the
matroid M , and in particular, makes sense even when the matroid M is not realizable.

We now see that Theorem A is an immediate consequence of Definition 2.6.1 and
Theorems 2.3.2, 2.4.1, and 2.5.1.

Proof of TheoremA By the Girard–Newton formula, the pi and qi are the universal
polynomials describing the Chern character in terms of the Chern classes and vice-
versa, see e.g., [17, Example 3.2.3]. Thus for all j ∈ Z≥0, Theorems 2.5.1 and 2.3.2
imply that κ�, j (M) is the degree j term of ch(F), so

ctop(F) = qdeg(c1(M)∩β)+n−d

(
(
!κ�,
(M))
∈Z>0

)
= e�(M),

where we note that rk(F) = deg(c1(M) ∩ β) + n − d by Riemann–Roch for vector
bundles on curves. Thus Theorem 2.4.1 gives the desired result. ��
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2.7 Finemoduli spaces of maps

We record here how to adapt the results in the literature to work in the fine logarithmic
setting, rather than the fine and saturated one. In this section, we set X be a simple
normal crossings pair with divisor D. We require four statements: (i) the moduli space
of fine logarithmic maps to X is a proper Deligne–Mumford stack, (ii) the moduli
space is equipped with a virtual fundamental class, (iii) this virtual fundamental class
is equal to the pushforward of the virtual fundamental class on the space of fine and
saturated maps, and (iv) the equality of virtual classes is compatible with evaluation
morphisms.

Themoduli space of fine logarithmic stablemaps to X is certainly a fine logarithmic
algebraic stack, by the main results of [48, 49]. There is a diagram comparing the fine
moduli problem with the fine and saturated one:

K�(X)fs K�(X)fine

M�(AX )fs M�(AX )fine

where AX denotes the Artin fan of X . Both vertical maps are strict by the argument
in [2, Lemma 4.1], and therefore the square is Cartesian in the category of algebraic
stacks.

The lower horizontal map

M�(AX )fs M�(AX )fine

is obtained from the saturation map, see for instance [49]. However, since the source
and target are logarithmically smooth in, respectively, the fine and saturated and fine
categories, the map is simply the normalization. It is therefore both proper and bira-
tional, and identifies fundamental classes under pushforward. Since the vertical maps
carry the same perfect obstruction theory, it now follows from the Costello–Herr–
Wise comparison theorem that the fine and saturated virtual fundamental class pushes
forward to the virtual fundamental class on the space of fine maps [11, 26].

Finally, the evaluation maps from K�(X)fs to the strata of X and the forgetful
map to the moduli stack of prestable curves factor through the space M0,r (X , β) of
ordinary stable maps, and then by [49, Theorem 1.1], they necessarily factor through
the space K�(X)fine as well. By the projection formula, for the purposes of computing
logarithmic Gromov–Witten invariants, i.e. integrals against the virtual fundamental
class of cohomology classes pulled back from evaluations and from the stack of curves,
we may use the theory of fine logarithmic maps.
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3 Quantum cohomology of wonderful models

Keeping the notation from the previous section, we will assume that in the choice
of discrete data �, the divisor DX is empty, and we will show how in this special
case Theorem A implies that the quantum cohomology of the wonderful model is a
combinatorial invariant.

We first set some notation for the relevant curve classes. Let U = X(�M ) ⊂ X ,
and let A1(M) denote the subgroup of A1(X) consisting of all β that satisfy γ ∩β = 0
for all γ ∈ ker(A1(X) → A1(U )). Also let ι : W ↪→ X denote the inclusion.

Proposition 3.0.1 The pushfoward map A1(W ) → A1(X) is injective and has image
A1(M).

Proof The pullback map ι� : A1(X) → A1(U ) → A1(W ) is surjective and has kernel

ker ι� = ker(A1(X) → A1(U )) (1)

because U ↪→ X is an open immersion and because A�(U ) → A�(W ) is an iso-
morphism of graded rings by [15, Theorem 3]. Because A1(U ) is generated by Chern
classes of line bundles and W ↪→ X is a closed immersion of smooth varieties, we
also have that ι� and ι� satisfy the projection formula

ι�(ι
�γ ∩ β) = γ ∩ ι�β

for any γ ∈ A1(X) and β ∈ A1(W ). Thus for any β ∈ ker ι� and γ ∈ A1(X),

deg(ι�γ ∩ β) = deg(γ ∩ ι�β) = 0,

so β = 0 by the surjectivity of ι� and the fact that deg(_ ∩ _) : A1(W )× A1(W ) → Z

is a perfect pairing. Thus ι� is injective. For any β ∈ A1(W ) and γ ∈ ker(A1(X) →
A1(U )),

γ ∩ ι�β = ι�(ι
�γ ∩ β) = 0,

so ι�(A1(W )) ⊂ A1(M).
Now suppose β ∈ A1(M) and consider the map ϕ : A1(X) → Z : γ �→ deg(γ ∩

β). By the surjectivity of ι�, (1), and the definition of A1(M), the map ϕ factors as

A1(X)
ι�−→ A1(W )

ψ−→ Z for some ψ . Let β ′ ∈ A1(W ) be such that ψ : A1(W ) → Z

is given by γ ′ �→ deg(γ ′ ∩ β ′). Then for any γ ∈ A1(X),

deg(γ ∩ ι�β
′) = deg(ι�γ ∩ β ′) = ψ(ι�(γ )) = ϕ(γ ) = deg(γ ∩ β),

so ι�β
′ = β by the fact that deg(_ ∩ _) : A1(X) × A1(X) → Z is a perfect pairing.

Thus ι�(A1(W )) = A1(M). ��
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The following corollary of Theorem A will show that, in a precise sense, the genus
0 Gromov–Witten theory of W depends only on the matroid M .

Let η : W ↪→ U and ρ : U ↪→ X denote the inclusions, and for each γ ∈ A�(U ),
fix some γ̃ ∈ A�(X) such that ρ�γ̃ = γ . Note that the following determines all genus
0 Gromov–Witten invariants of W because η� : A�(U ) → A�(W ) is an isomorphism
by [15, Theorem 3].

Corollary 3.0.2 Let γ1, . . . , γm ∈ A�(U ). Then

K�(ρ ◦ η)�

(
(ev�

1(η
�γ1) ∪ · · · ∪ ev�

m(η�γm)) ∩ [K�(W )]vir
)

= (ev�
1(γ̃1) ∪ · · · ∪ ev�

m(γ̃m)) ∩ [M]vir� ,

and

∫
[K�(W )]vir

ev�
1(η

�γ1) ∪ · · · ∪ ev�
m(η�γm) =

∫
[M]vir�

ev�
1(γ̃1) ∪ · · · ∪ ev�

m(γ̃m).

Proof Because the γ̃i and thus the ev�
i (γ̃i ) are generated by Chern classes of line

bundles, we have a projection formula

K�(ρ ◦ η)�

(
K�(ρ ◦ η)�(ev�

1(γ̃1) ∪ · · · ∪ ev�
m(γ̃m)) ∩ [K�(W )]vir

)

= (ev�
1(γ̃1) ∪ · · · ∪ ev�

m(γ̃m)) ∩ K�(ρ ◦ η)�[K�(W )]vir
= (ev�

1(γ̃1) ∪ · · · ∪ ev�
m(γ̃m)) ∩ [M]vir� ,

where the second equality is due to Theorem A. The first equation of the theorem then
follows from the fact that

evi ◦ K�(ρ ◦ η) = ρ ◦ η ◦ evi

for all i ∈ {1, . . . , m}. The second equation of the theorem is obtained by applying
deg to both sides of the first equation. ��

We may now prove Theorem B.

Proof of Theorem B Suppose A1 and A2 are hyperplane arrangements in P
d realizing

M . Then [15, Theorem 3] induces an isomorphism of graded vector spaces

Q H �(WA1)
∼= Q H �(WA2)

that is compatible with the quantum product by Proposition 3.0.1 and Corollary 3.0.2
applied to the 3-pointed invariants giving the structure constants of the ring. ��
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4 Toric logarithmic structure

The main construction of Sect. 2.6 associates to each matroid M virtual fundamental
classes [M]vir� . We recall that part of the discrete data � includes a choice of boundary
divisor DX ⊂ X(�n). In the present section, we specialize to the situation where
DX is the full toric boundary of X(�n), where the data of [M]vir� can be transformed
into a purely combinatorial data structure, namely that of Minkowski weights [18].
Our approach here is inspired by an influential paper of Katz on toric and tropical
intersection theory [30].

Throughout the section, we fix a matroid M of rank d + 1 on n + 1 elements. The
associated Bergman fan �M is a subfan �n and is a union of cones of dimension d,
see for instance [31].

4.1 Toric intersection theory

Let Y be a complete toric variety with fan �. Let c ∈ Ak(Y ) be a Chow cohomology
class. If σ is a cone in� of codimension k and V (σ ) is the associated closed stratum of
dimension k, the homology class c ∩ V (σ ) has a well-defined degree. These degrees,
ranging over all codimension k cones, determine the Chow cohomology class [18].
Let �(k) be the cones in � of codimension k.

Definition 4.1.1 A Q-valued function c on �(k) is balanced if it satisfies the relation

∑
σ∈�(k):σ⊂τ

〈u, nσ,τ 〉 · c(σ ) = 0,

where τ is a cone of codimension k + 1 and the vector nσ,τ is the generator of the
lattice of σ relative to that of τ . A balanced function of this form is aMinkowski weight
of codimension k.

The Minkowski weights of a fixed codimension form a group. The direct sum of
the groups admits a ring structure, described in [18]. Fulton and Sturmfels prove the
following theorem.

Theorem 4.1.2 (Fulton–Sturmfels) The operational Chow cohomology ring of Y is
naturally isomorphic to the ring MW(�) of Minkowski weights on �.

If π : X ′ → X is an equivariant modification of proper toric varieties and �′ → �

is the induced subdivision of fans, there is an evident inclusion of Minkowski weight
rings

MW(�) ↪→ MW(�′)

which coincides, under the above identification, with the pullback homomorphism π�.
It is both traditional and helpful to view a Minkowski weight not as a function but

as an object of polyhedral geometry. Specifically, as the union of the cones in � on
which c is nonzero, decorated by the function values. These are precisely the balanced
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polyhedral complexes of tropical geometry. In particular, the pullback homomorphism
under a modification as above corresponds to a refinement of balanced fans with the
obvious weighing on their cones.

4.2 Toric embeddings of moduli

The virtual fundamental class [M]vir� is a homology class on the space K�(X), but as
we have shown in the previous section, the class is equal to the virtual Poincare dual of
the Euler class of a vector bundle. The conversion to Minkowski weights is facilitated
by the following two results. The first arises from the geometry of Chow quotients,
and describes the moduli space of pointed genus 0 curves as a subvariety of a toric
variety, transverse to its boundary [28, 46].

Theorem 4.2.1 The moduli space M0,n is equal to the Chow quotient of the Grass-
mannian of linear planes G(2, n) by the n-dimensional dilating torus T . The Plücker
embedding

G(2, n) ↪→ P
(n
2)−1

is T equivariant and determines a map of Chow quotients

M0,n ↪→ Y ′
0,n

where Y ′
0,n is the toric Chow quotient of the Plücker projective space by T . There is

a toric resolution of singularities Y0,n → Y ′
0,n which restricts to an isomorphism on

M0,n. Moreover, the toric stratification of Y0,n pulls back to the stratification of M0,n
by the topological type of the universal curve.

We fix a resolution Y0,n guaranteed by the theorem, and thereby a smooth toric
variety affording a strict closed embedding M0,n ↪→ Y0,n . The next result concerns
the space of logarithmic stable maps to a toric variety with respect to its full toric
boundary, and supplies a simple description of this moduli space [39].2

Theorem 4.2.2 The moduli space K�(X) is realized as a toroidal modification

K�(X) → M0,n × X .

In particular, it is logarithmically smooth and irreducible of the expected dimension.
Its virtual fundamental class coincides with its fundamental class.

As a consequence the moduli space of stable maps also embeds in a toric variety.

Corollary 4.2.3 There is a sequence of morphisms

K�(X) ↪→ Y� → Y0,n × X

2 The methods originally used to prove this result involve non-archimedean geometry; a simpler and more
direct logarithmic geometric proof may be found in [43].
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where the first arrow is a closed embedding and the second arrow is a toric modifica-
tion. Moreover, the toric stratification of Y� pulls back to the stratification of K�(X)

by tropical type.

4.3 virtual fundamental classes to Minkowski weights

We remind the reader that M is a matroid that is realizable over a characteristic
0 field, and � is a choice of logarithmic Gromov–Witten discrete data, fixing the
degree, number of markings, their contact orders, and the boundary divisor on the
permutohedral toric variety, which for this section has been fixed to be the full toric
variety. The variety W is a wonderful model for an arrangement complement realizing
M .

We now convert the class [K�(W )]vir into a balanced polyhedral complex using the
toric embedding above. It will be helpful to introduce a logarithmic Chow ring first.
See [4, 37].

Definition 4.3.1 Let Z be a logarithmic scheme. The logarithmic Chow ring of Z with
respect to its logarithmic structure is


A�(Z) := lim−→ A�(Z ′)

where the limit is taken over all logarithmic modifications, i.e. proper, logarithmically
étale, and birational morphisms Z ′ → Z , and transition maps given by cohomological
pullback.

A basic property of the logarithmic Chow ring is that it is insensitive to replacing Z
with a further logarithmic modification. The logarithmic Chow ring of a toric variety
X has an elegant description. Let NR denote the cocharacter space of the dense torus
of X . A tropical cycle on NR is a Minkowski weight on some complete fan in NR. As
an immediate consequence of the naturality of the identification of Chow cohomology
with Minkowski weights, the logarithmic Chow ring of a toric variety X , equipped
with its standard logarithmic structure, is identified with the set of all tropical cycles
on NR. The group and ring structure have natural descriptions as well, but we refer
the reader to the literature for details [18, 32].

Consider a logarithmic modification

π : K�(X)′ → K�(X)

ofmoduli spaces. Since themorphism K�(W ) ↪→ K�(X) is strict, the scheme theoretic
pullback defines a Cartesian diagram of fine and saturated logarithmic schemes

K�(W )′ K�(X)′

K�(W ) K�(X).

j

π

i
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The moduli space K�(W )′ is also equipped with a virtual fundamental class, which
pushes forward to the virtual fundamental class of K�(W ), see [40, Section 3.5].

Proposition 4.3.2 The following equality of classes holds in the Chow homology group
of K�(X)′:

j�[K�(W )′]vir = ctop(π
�
F) ∩ [K�(X)′].

Proof The substack K�(W )′ in K�(X)′ is cut out by a section of the pullback bundle
π�

F. The equality of classes now follows by the virtual compatibility argument in
Sect. 2.4, see Remark 2.4.3. ��

Let π : K�(X)′ → K�(X) be a logarithmic modification with nonsingular source.
Invoking the Poincare duality isomorphism, we can identify the pushforward of the
virtual fundamental class of K�(W )′ with the top Chern class of the vector bundle
π�

F. Since the logarithmic Chow ring is insensitive to replacement of the space by a
logarithmicmodification, the proposition immediately implies that there is an element

[K�(W )]log in 
A�(K�(X)).

Recall that we have constructed a sequence of strict closed embeddings

K�(W ) ↪→ K�(X) ↪→ Y�.

Lemma 4.3.3 Every logarithmic modification of K�(X) is pulled back from a toric
modification of Y� .

Proof Every logarithmic modification of K�(X) is induced by a subdivision of its
toroidal fan. It is proved in [39] that the toroidal fan of K�(X) is a union of cones in
the toric fan of Y� , with the identification induced by the inclusion K�(X) ↪→ Y� . The
result follows. ��

The logarithmic virtual fundamental class gives rise to a logarithmic cohomology
class on the toric variety Y� . Recall that we have fixed a modification π : K�(X)′ →
K�(X). We may choose a modification of Y� that induces it, to produce a sequence of
modifications:

K�(W )′ K�(X)′ Y ′
�

K�(W ) K�(X) Y�

Note that both squares are cartesian. Moreover, if we insist that Y ′
� → Y� is a

resolution of singularities, then by pushing forward the virtual fundamental class of
K�(W )′ to Y ′

� and applying Poincare duality, we obtain a Chow cohomology class
c′
�(M), and we view it in the logarithmic Chow ring 
A�(Y�).



Gromov–Witten theory and invariants of matroids Page 19 of 28 69

Proposition 4.3.4 The element c′
�(M) in 
A�(Y�) is independent of the toric resolution

Y ′
� → Y� .

Proof Since any two birational modifications of Y� can be dominated by a resolution
of singularities of their common refinement, it suffices to check that if p : Y ′′

� → Y ′
�

is a further toric modification by a smooth toric variety, then the class c′′
�(M) is equal

to c′
�(M) in 
A�(Y�). By unwinding the definition of the direct limit, it suffices to

show an equality

p�c′
�(M) = c′′

�(M) in A�(Y ′′
�).

Since K�(X) ↪→ Y� is strict, we have the pullback square

K�(X)′′ Y ′′
�

K�(X)′ Y ′
�.

The two vertical arrows have smooth source and target, and therefore are both local
complete intersection morphisms of codimension 0, and the corresponding Gysin
pullbacks from the Chow groups of K�(X)′ to those of K�(X)′′ coincide. The virtual
fundamental classes of K�(W )′′ and K�(W )′, after pushforward to the corresponding
spaces of maps to X , are both equal to the top Chern class of the vector bundle F,
pulled back from K�(X). The claim above is now a consequence of compatibility of
proper pushforward and Gysin pullback. The statement in the proposition follows. ��
Definition 4.3.5 (The virtual weight) The virtual Minkowski weight of a matroid M
in discrete data � as above, is the Minkowski weight determined by the logarithmic
Chow class c�(M) in the logarithmic Chow ring 
A�(Y�).

Remark 4.3.6 Note that the image of [K�(W )′]vir� in A�(K�(X)′) is equal to the Poincaré
dual of the pullback of the class e�(M) defined in Sect. 2.6. In particular, c�(M)

depends only on the discrete data � and the matroid M and even makes sense when
M is not realizable.

4.4 Reconstruction: Gromov–Witten theory from the virtual weights

Wemaintain the notation of the previous section. We show that they completely deter-
mine the logarithmic Gromov–Witten invariants. The discrete data � determines, for
each marked point pi a stratum Fi ⊂ W , given by the intersection of all divisors
with respect to which pi has positive contact order. If pi has zero contact with all
divisors, then Fi is defined to be W itself. We recall that the moduli space K�(W )

admits evaluation morphisms and forgetful morphisms toM0,n :

evi : K�(W ) → Fi ε : K�(W ) → M0,n .
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Let ψi denote the first Chern class of the cotangent line bundles associated to the i th
marked point in M0,n . Given cohomology classes γi in A�(Fi ) and positive integers
k1, . . . , kn , we define the logarithmic Gromov–Witten invariants3 by:

〈τk1(γ1), . . . , τkn (γn)〉 :=
∫

[K�(W )]vir

n∏
i=1

ψ
ki
i ev�

i γi .

Our main result in this section is to show that these invariants may all be computed
from the virtual weight c�(M) in the cocharacter space of the fan of Y� . Specifically,
for each operator τki (γi ) we will construct a Minkowski weight tki (γi ) on the fan of
the toric variety Y� and establish the following reconstruction theorem.

Theorem 4.4.1 The logarithmic Gromov–Witten invariant 〈τk1(γ1), . . . , τkn (γn)〉 is
computed by the tropical intersection product of the Minkowski weight c�(M) with
the Minkowski weights tki (γi ).

In other words, the balanced weighted fan c�(M) uniquely reconstructs the loga-
rithmic Gromov–Witten theory of W . The remainder of this subsection is dedicated
to proving this theorem.

We recall several basic closed embeddings. Thefirst is the inclusionof thewonderful
model W ↪→ X . We have also constructed a sequence of strict closed embeddings

K�(W ) ↪→ K�(X) ↪→ Y�,

as well as a strict closed embedding

M0,n ↪→ Y0,n .

We first note that the cotangent classes have precursors in the toric variety Y0,n .

Lemma 4.4.2 The Chow cohomology class ψi is the pullback of a Chow cohomology
class on Y0,n along the inclusion M0,n ↪→ Y0,n.

Proof This is proved in [30, Section 7]. ��
We next note that each constraint in W has a precursor as well.

Lemma 4.4.3 Let γ be a class in A�(W ). There exists a cohomology class γ in A�(X)

whose image under the pullback map induced by W ↪→ X is γ .

Proof The Bergman fan of W determines a union of cones in �n and therefore an
invariant open toric variety U ↪→ X and a factorization

W ↪→ U ↪→ X

3 Wehave defined the ancestor theory here. The descendent theory differs from this by boundary corrections,
and may also be treated by these methods, but additional bookkeeping which we wish to avoid here.
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into a closed embedding followed by an open embedding. The pullback morphism

A�(U ) → A�(W )

is an isomorphism [15, Theorem 3]. The pullback morphism

A�(X) → A�(U )

is surjective by the excision sequence. The result follows. ��
In fact, we require a mild strengthening of the above lemma. Let F ⊂ W be a

stratum. The embedding W ↪→ X determines an embedding

F ↪→ E

where E is the smallest closed torus orbit containing F . Note that E is a stratum in
the toric variety associated to the permutohedron, and is therefore a product of smaller
dimensional permutohedral toric varieties. Similarly, F is a stratum in a wonderful
model, and is therefore a product of smaller wonderful models [13, Section 4.3].
Moreover, the induced map

F1 × · · · × Fs ↪→ E1 × · · · × Es

is a product of embeddings of wonderful models. Since both the source and target
are linear varieties in the sense of Totaro, they both satisfy the Chow–Künneth prop-
erty [47, Section 3].

Lemma 4.4.4 Let F ↪→ E be as above and let γ be a class in A�(F). There exists
a cohomology class γ in A�(E) whose image under the pullback map induced by
F ↪→ E is γ .

Proof Apply the Chow–Künneth property and reduce to the previous lemma. ��
There is a largest torus invariant open subscheme of Y� that contains K�(X),

obtained as the union of all torus orbits intersecting K�(X). Denote this toric vari-
ety by Y ◦

� . The following result controls the evaluation morphism.

Lemma 4.4.5 Let evi : K�(X) → E be an evaluation morphism. There is a factoriza-
tion

K�(X) E

Y ◦
�

evi

ei

where ei is an equivariant toric morphism.
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Proof We recall that the intrinsic torus of a very affine variety is the algebraic torus
associated to the abelian group of global invertible functions up to constant func-
tions [46, Section 3]. The dense torus in the toric variety Y ◦

� coincides with the intrinsic
torus of the interior of K�(X). To see this, note that this interior is the product ofM0,n
with an algebraic torus, and the intrinsic torus of M0,n is the dense torus in Y0,n
by [25, Section 6]. Since the morphism evi is a dominant map of very affine varieties,
we obtain the claimed factorization by [46, Section 3.1]. ��

As a result, every evaluation class has a toric precursor, as we now record.

Lemma 4.4.6 Let E be a stratum of X as above and fix a cohomology class γ receiving
an evaluation map from K�(X) along the marked point pi . There is a cohomology class
on Y� whose image under the pullback along

K�(X) ↪→ Y�

is equal to the evaluation class ev�
i (γ ).

Proof By applying the previous lemma, there is a cohomology class on Y ◦
� that pulls

back to ev�
i (γ ). Themap Y ◦

� ↪→ Y� is an open embedding, so a precursor is guaranteed
by the excision sequence. ��

4.4.1 Proof of Theorem 4.4.1

We begin with the Gromov–Witten invariant

〈τk1(γ1), . . . , τkn (γn)〉 :=
∫

[K�(W )]vir

n∏
i=1

ψ
ki
i ev�

i γi .

By the projection formula, the invariant can be computed on the toric variety Y� ,
provided that there exist classes in A�(Y�) that pull back to the integrand under the
embedding

K�(W ) ↪→ Y�.

These are guaranteed by the preceding three lemmas, and we conclude. ��

4.5 Support of the virtual weight

The class c�(M) is a Minkowski weight on the fan Y� . We will denote the fan of Y�

by �� . Define its support |c�(M)| to be the set of cones in �� where the associated
weight is nonzero. The support is tightly constrained, as we now explain.

The moduli space K�(X) is logarithmically smooth, has an associated tropicaliza-
tion which we denote T�(�n). A point of the tropical moduli space parameterizes
maps

F : � → �n
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where � is a tropical rational curve and F is an integer affine map satisfying the
balancing condition.Adetailed description is found in [39, Section 3.1]. The subvariety
W ↪→ X determines an open subschemeU ↪→ X consisting of the union of all locally
closed torus orbits intersecting W . The equivariant inclusion U ↪→ X determines an
inclusion of subcomplex �M ↪→ �n , identifying the Bergman fan of M with a
subcomplex of the permutohedral fan.

The tropical moduli space T�(�n) contains a subset T�(�M ) of tropical maps
whose image is contained in �M .

Lemma 4.5.1 The subset T�(�M ) ⊂ T�(�n) is a union of cones.

Proof The cone complex�M is a union of cones in�n . By [39, Section 3.2], the cones
of T�(�n) are determined by the specification of cones of �n to which each face of
the source tropical curve maps. The condition that a moduli point of T�(�n) lies in
T�(�M ) is then precisely the condition that each such cone is contained in �M . This
determines a subcomplex of T�(�n) as claimed. ��

We can now state the support constraint on c�(M).

Proposition 4.5.2 If M is realized by a hyperplane arrangement over the complex
numbers, then the support |c�(M)| is contained in T�(�M ).

Proof LetU ⊂ X be the open toric variety determined by the union of the cones of�n

that are contained in �M . Let K�(U ) be the open substack of K�(X) parameterizing
those logarithmicmaps whose image is contained inU . If W is the wonderful model of
any realization of M , then W ⊂ U , and consequently K�(U ) contains K�(W ). We now
compute the virtual weight c�(M) by the projection formula. Specifically, we must
determine intersections of the boundary strata of the toric variety Y� with the virtual
fundamental class [K�(W )]vir. By the projection formula, the weight is determined as
follows.We choose strata ofY� whose codimension is equal to the virtual dimension of
K�(W ). The pullback of this stratum is a stratum that may have positive dimension, but
comes equippedwith a virtual fundamental class in homological degree 0. The degrees
of these strata virtual fundamental classes, across all such strata of Y� , determine the
virtual Minkowski weight.

However, as argued above, we have a factorization

K�(W ) ↪→ K�(U ) ↪→ K�(X) ↪→ Y�.

Moreover, the maps are all strict, and the stratification on Y� pulls back to the induced
logarithmic stratification on each space mapping to it. It follows immediately that if
we are given a stratum of Y� that does not meet K�(U ) then the Minkowski weight on
this cone must be zero. However, the strata of Y� that meet K�(U ) are precisely those
corresponding to cones in T�(�M ). The result follows. ��

4.6 First examples

The computation of Gromov–Witten invariants is a famously difficult problem, and
the virtual Minkowski weights are similarly difficult to compute. In what follows,
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we sketch some simple examples that give a sense of the behaviour of the virtual
Minkowski weights.

The first example illustrates the relationship between our results here and traditional
correspondence theorems [22, 23, 36, 38, 39].

Example 4.6.1 If M is thematroid associated to an arrangement of n+1 generic hyper-
planes in Pn , then W coincides with X , namely the toric variety of the permutohedron.
In this case, the moduli space K�(W ) is logarithmically unobstructed, and it is the
closure of its interior. Moreover, this interior is isomorphic toM0,n times an algebraic
torus [41]. In this case, the weight c�(M) is represented by the balanced polyhedral
complex T�(�n) with weight 1 on all maximal cones.

We next show that the virtual fundamental class construction detects a nontrivial
subcomplex of T�(�M ).

Example 4.6.2 Let M be the matroid associated to the arrangement of 3 points on P1.
Label the boundary divisor 3 points as q1, q2, q3 inP1. TheBergman fan�M coincides
with the 1-skeleton of the fan of P2, the “traditional” tropical line in the plane. We
choose the discrete data � to have 6 marked points p11, p12, p21, p22, p31, p32. We
choose contact orders such that pi j has contact order 1 with qi , for all i and j .

The cone complex T�(�M ) contains a 3-dimensional cone, parameterizing maps

� → �M

where� is a stable 6-pointed trivalent tropical curve with 3 bounded edges. Themap is
uniquely specified by the balancing condition. However, theMinkowskiweight c�(M)

in this case is a 2-dimensional balanced subcomplex of T�(�M ). In fact, an explicit
computation shows that c�(M) is simply the union of the 2-dimensional cones in this
case.

The point of the previous example is that the combinatorial invariant c�(M) involves
some subtlety. For example, the naive generalization of our first examplewould suggest
that the virtual fundamental class is always equal to T�(�M ) with weights equal to
1 which is obviously a combinatorial invariant. The above example shows that this
cannot be the case, indeed, the complex T�(�M ) is not even equidimensional!

In fact, if the matroid is allowed to be of higher rank the phenomenon is already
visible in degree 1.

Example 4.6.3 This example is adapted from work of Lamboglia [34]. In this work, it
is shown that if M is the matroid associated to a generic 2-dimensional plane in P

n

for n ≥ 5, the tropical Fano variety is not pure dimensional [34, Section 3]. Note that
�M is the 2-skeleton of the fan of Pn . The tropical Fano variety coincides with the
space T�(�M ) with the discrete data � being that of a generic line. That is, there are
n + 1 marked points, with each meeting precisely one of the n + 1 lines determined
by the intersection of P2 with the boundary of Pn . The weight c�(M) is supported on
the 2-dimensional cones of T�(�M ).

Additional higher dimensional examples can be computed by means of products of
rank 2 matroids, using the product formula in [41].
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Example 4.6.4 Let M ′ be any complex realizable matroid, and let M be the direct sum
of this matroid with the arrangement of 2 points on P

1. In this case, �M is identified
with�M ′ ×R. Let W ′ be a wonderful realization of M ′. Wemay take W to be W ′×P

1.
Then for any contact orders �, we obtain a morphism of moduli spaces

K�(W ) → K�(W ′).

The relative logarithmic tangent bundle of W over W ′ is trivial, and since we work
in genus 0, this map is logarithmically smooth. Since the logarithmic obstruction
theory is compatible with logarithmically smooth morphism, it follows that the virtual
Minkowski weight c�(M) is canonically identified with the preimage of c�(M ′) under
the linear projection

T�(�M ) → T�(�′
M ).

Note that when �M ′ in the previous example is a point, we recover the results of [8,
39].

There is an in-principle way to determine the weight c�(M). We record it for use
in future work.

Remark 4.6.5 If M is realizable, the weight c�(M) may be computed as follows. For
each cone of T�(�M ) with dimension equal to the virtual dimension, we obtain a
closed substack of K�(W ). The substack possesses a virtual fundamental class in
homological dimension 0 by construction. Its degree is a rational number which is
the value of c�(�M ) on this cone. The number can in principle be calculated by the
degeneration formula [41] or by Grothendieck–Riemann–Roch, which reduces the
calculation to a tautological integral on the space of maps to a toric variety.

5 Questions

We collect a number of questions suggesting future development of the directions
here.

In order to define Gromov–Witten invariants, it is necessary to intersect the matroid
virtual class, which is a class in the Chow group of K�(X(�n)), with cohomology
classes in the Chow ring of M . We recall that this Chow ring is identified with the
Chow ring A�(UM ) for UM ↪→ X(�n) the torus invariant open determined by the
Bergman fan of M inside �n . Since we only have access to pulling back cohomology
classes from X(�n) and its strata, we must first choose a lift of the relevant classes
along the surjection

A�(X(�n)) → A�(UM )

induced by flat pullback along UM ↪→ X(�n). The following question asks whether
the resulting invariants are well-defined, i.e. if they are independent of the lift.
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Question 1 Let M be a matroid on {0, . . . , n}, and let γ1, . . . , γm ∈ A�(X(�n)) be
such that γi |UM = 0 for some i ∈ {1, . . . , m}. Do we have

deg
(
ev�

1(γ1) ∪ · · · ∪ ev�
m(γm)

) ∩ [M]vir� = 0

for all choices of numerical data �?

A positive answer to this question would provide a definition of Gromov–Witten
invariants of an arbitrary matroid M in genus 0, and produce a quantum deformation
of the Chow ring of M studied in [15].

In the penultimate section, we constructed Minkowski weights c�(M) associated
to any matroid. In the realizable case, we were able to show that the support of c�(M)

was contained in the cone complex T�(�M ).

Question 2 Is the support of the virtual Minkowski weight c�(M) contained in
T�(�M )?

At present, we have few tools to calculate the virtual Minkowski weights associated
to a matroid. Invariants of matroids, such as the Tutte polynomial and characteristic
polynomial, often satisfy good properties with respect to deletion and contraction
operations.

Question 3 What is the behavior of the virtual Minkowski weights c�(M) under dele-
tion/contraction of M at an element of the ground set?

We expect that the degeneration formula may shed some light on this question [40].
Another basic question is to follow the ideas of this paper, but in higher genus.

Question 4 Is the genus g logarithmic Gromov–Witten theory of the wonderful model
of a complex arrangement complement a combinatorial invariant? If so, can a higher
genus Gromov–Witten theory for a general matroid be defined?

The obstacle here is that virtual fundamental classes in higher genus are not easily
expressible via Chern class operations on the space of maps to X(�n). However,
in genus 1, the reduced logarithmic Gromov–Witten theory developed in [42] may
provide an avenue of access.
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