Skip to main content
Log in

Abstract

We state six axioms concerning any regularity property P in a given birational equivalence class of algebraic threefolds. Axiom 5 states the existence of a Local Uniformization in the sense of valuations for P. If Axioms 1 to 5 are satisfied by P, then the function field has a projective model which is everywhere regular with respect to P. Adding Axiom 6 ensures the existence of a P-Resolution of Singularities for any projective model. Applications concern Resolution of Singularities of vector fields and a weak version of Hironaka’s Strong Factorization Conjecture for birational morphisms of nonsingular projective threefolds, both of them in characteristic zero. The last section contains open problems about axiomatizing regularity properties which have P-Resolution of Singularities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abhyankar S.: Local uniformization on algebraic surfaces over ground fields of characteristic p≠ 0. Ann. Math. 63, 491–526 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abhyankar S.: On the valuations centered in a local domain. Am. J. Math. 78, 321–348 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abhyankar, S.: Resolution of singularities of embedded algebraic surfaces, 2nd edn, Springer Monographs in Math, Springer, Berlin (1998)

  4. Abramovich D., de Jong A.J.: Smoothness, semistablility, and toroidal geometry. J. Algebr. Geom 6, 789–801 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Abramovich D., Karu K., Matsuki K., Włodarczyk J.: Torification and factorization of birational maps. J. Am. Math. Soc. 15(3), 531–572 (2002)

    Article  MATH  Google Scholar 

  6. Bogomolov F., Pantev T.: Weak Hironaka Theorem. Math. Res. Lett. 3, 299–307 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Cano, F.: Desingularization strategies for three-dimensional vector fields, Lecture Notes in Mathematics, vol. 1259, Springer, Berlin (1987)

  8. Cano F.: Reduction of the singularities of nondicritical singular foliations. Dimension three. Am. J. Math. 115(3), 509–588 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cano F.: Reduction of the singularities of codimension one singular foliations in dimension three. Ann. Math. 160(3), 907–1011 (2004)

    Article  MathSciNet  Google Scholar 

  10. Cano, F., Roche, C., Spivakovsky, M.: Reduction of singularities of three-dimensional line foliations (this volume)

  11. Cossart V.: Modèle projectif régulier et désingularisation. Math. Ann. 293(1), 115–122 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cossart V., Piltant O.: Cossart, Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings. J. Algebra 320(3), 1051–1082 (2009)

    Article  MathSciNet  Google Scholar 

  13. Cossart V., Piltant O.: Resolution of singularities of threefolds in positive characteristics II. J. Algebra 321(1), 1836–1976 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cutkosky S.D.: Local factorization of birational maps. Adv. Math. 132(2), 167–315 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cutkosky, S.D.: Local monomialization and factorization of morphisms. Astérisque 260 (1999)

  16. de Jong A.J.: Smoothness, semistability and Alterations. Publ. Math. I.H.E.S. 83, 51–93 (1996)

    MathSciNet  MATH  Google Scholar 

  17. Hartshorne, R.: Algebraic Geometry, Graduate Texts in Mathematics 52, Springer, Berlin (1977)

  18. Hironaka H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. Math. 79, 109–326 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hironaka, H.: Desingularization of excellent surfaces, Advanced Science Seminar in Algebraic Geometry (1967), Bowdoin College, Brunswick, Maine (1967)

  20. Hironaka, H.: Idealistic exponents of singularity. In: J.J. Sylvester symposium, pp. 52–125. John Hopkins Univ. (Baltimore 1976), John Hopkins Univ. Press (1977)

  21. Karu K.: Local strong factorization of toric birational maps. J. Algebr. Geom 14, 165–175 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matsumura, H.: Commutative ring theory, Cambridge studies in advanced mathematics 8, Cambridge Univ. Press. (1986)

  23. Pinkham, H.: Factorization of birational maps in dimension three. In: Proc. Symp. in Pure Math., 40 Part 2, AMS Providence, pp. 343–372 (1983)

  24. Seidenberg A.: Reduction of singularities of the differential equation A dy = B dx. Am. J. Math. 90, 248–269 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shannon D.L.: Monoidal transforms. Am. J. Math. 95, 294–320 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  26. Włodarczyk J.: Toroidal varieties and the weak factorization theorem. Invent. Math. 154(2), 223–331 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zariski O.: The reduction of the singularities of an algebraic surface. Ann. Math. 40, 639–689 (1939)

    Article  MathSciNet  Google Scholar 

  28. Zariski O.: Local uniformization of algebraic varieties. Ann. Math. 41, 852–896 (1940)

    Article  MathSciNet  Google Scholar 

  29. Zariski O.: The compactness of the Riemann manifold of an abstract field of algebraic functions. Bull. Am. Math. Soc. 45, 683–691 (1944)

    Article  MathSciNet  Google Scholar 

  30. Zariski O.: Reduction of the singularities of algebraic three dimensional varieties. Ann. Math. 45, 472–542 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zariski, O., Samuel, P.: Commutative Algebra II. Van Nostrand, Princeton (1960)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Piltant.

Additional information

Dedicated to Heisuke Hironaka on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piltant, O. An axiomatic version of Zariski’s patching theorem. RACSAM 107, 91–121 (2013). https://doi.org/10.1007/s13398-012-0090-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-012-0090-6

Keywords

Mathematics Subject Classification

Navigation