Skip to main content
Log in

The approximation property for spaces of holomorphic functions on infinite dimensional spaces III

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

Let \((\mathcal{ H} (U), \tau _{\omega })\) denote the vector space of all complex-valued holomorphic functions on an open subset U of a Banach space E, with the Nachbin compact-ported topology. Let \((\mathcal{ H} (K), \tau _{\omega })\) denote the vector space of all complex-valued holomorphic germs on a compact subset K of E, with its natural inductive limit topology. Let \(\mathcal{ P} (^{m}E)\) denote the Banach space of all continuous complex-valued m-homogeneous polynomials on E. When E has a Schauder basis, we show that \((\mathcal{ H} (K), \tau _{\omega })\) has the approximation property for every compact subset K of E if and only if \(\mathcal{ P} (^{m}E)\) has the approximation property for every \(m \in \mathbb{ N} \). When E has an unconditional Schauder basis, we show that \((\mathcal{ H} (U), \tau _{\omega })\) has the approximation property for every pseudoconvex open subset U of E if and only if \(\mathcal{ P} (^{m}E)\) has the approximation property for every \(m \in \mathbb{ N} \). These theorems apply in particular to the classical Banach spaces \(\ell _{1}\) and \(c_{0}\), and to the original Tsirelson space \(T^{*}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alencar, R.: On reflexivity and basis for \({\cal P}(^{m}E)\). Proc. R. Ir. Acad. 85, 131–138 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Alencar, R., Aron, R., Dineen, S.: A reflexive space of holomorphic functions in infinitely many variables. Proc. Am. Math. Soc. 90, 407–411 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aron, R., Dineen, S.: Q-reflexive Banach spaces. Rocky Mt. J. Math. 27, 1009–1027 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aron, R., Schottenloher, M.: Compact holomorphic mappings on Banach spaces and the approximation property. J. Funct. Anal. 21, 7–30 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bierstedt, K.D., Meise, R.: Bemerkungen über die Approximationseigenschaft lokalkonvexer Funktionenräume. Math. Ann. 209, 99–107 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, C., Dineen, S., Rueda, P.: Weakly uniformly continuous holomorphic functions and the approximation property. Indag. Math. (N.S.) 12, 147–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caliskan, E.: The bounded approximation property for weakly continuous type holomorphic mappings. Extracta Math. 22, 157–177 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Chae, S.B.: Holomorphic germs on Banach spaces. Ann. Inst. Fourier (Grenoble) 21(3), 107–141 (1971)

    Article  MathSciNet  Google Scholar 

  9. Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer, London (1999)

    Book  MATH  Google Scholar 

  10. Dineen, S.: Spectral theory, tensor products and infinite dimensional holomorphy. J. Korean Math. Soc. 41, 193–207 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dineen, S., Harte, R., Taylor, C.: Spectra of tensor product elements III: holomorphic properties. Math. Proc. R. Ir. Acad. 103A, 61–92 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite dimensional spaces I. J. Approx. Theory 126, 141–156 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dineen, S., Mujica, J.: The approximation property for spaces of holomorphic functions on infinite dimensional spaces II. J. Funct. Anal. 259, 545–560 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dineen, S., Mujica, J.: A monomial basis for the holomorphic functions on \(c_{0}\). Proc. Am. Math. Soc. (in press)

  15. Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Mem. Am. Math. Soc. 16 (1955)

  16. Gruman, L., Kiselman, C.: Le problème de Levi dans les espaces de Banach à base. C. R. Acad. Sci. Paris 274, 1296–1299 (1972)

    MathSciNet  MATH  Google Scholar 

  17. Jarchow, H.: Locally Concex Spaces. Teubner, Stuttgart (1981)

    Book  Google Scholar 

  18. Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)

    Book  MATH  Google Scholar 

  19. Lempert, L.: Approximation of holomorphic functions on infinitely many variables II. Ann. Inst. Fourier (Grenoble) 50, 423–442 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lempert, L., Patyi, I.: Analytic sheaves in Banach spaces. Ann. Sci. Ec. Norm. Sup. 40(4), 453–486 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I and II. Springer, Berlin (1996)

    Google Scholar 

  22. Mujica, J.: Spaces of germs of holomorphic functions. In: Rota, G.C. (ed.) Studies in Analysis, Adv. in Math. Suppl. Stud., vol. 4, pp. 1–41. Academic Press, New York (1979)

  23. Mujica, J.: Complex Analysis in Banach Spaces, North-Holland, Amsterdam (1986) [reprinted by Dover, Mineola, New York, (2010)]

  24. Mujica, J.: Spaces of holomorphic functions and the approximation property. In: lecture notes, Universidad Complutense de Madrid (2009)

  25. Mujica, J., Zerhusen, A.: Open sets with the Runge property in Banach spaces. J. Math. Anal. Appl. 377, 384–391 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ryan, R.: Applications of topological tensor products to infinite dimensional holomorphy. Doctoral Thesis, Trinity College Dublin (1980)

  27. Schottenloher, M.: \(\varepsilon \)-product and continuation of analytic mappings. In: Nachbin, L. (ed.) Analyse Fonctionelle et Applications, pp. 261–270. Hermann, Paris (1975)

  28. Schwartz, L.: Produits tensoriels topologiques d’espaces vectoriels topologiques. In: Espaces vectoriels topologiques nucléaires. Applications. Séminaire Schwartz 1953–1954, Faculté de Sciences de Paris (1954)

  29. Schwartz, L.: Théorie des distributions a valeurs vectoriells. Ann. Inst. Fourier (Grenoble) 7, 1–141 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tsirelson, B.: Not every Banach space contains an imbedding of \(\ell _{p}\) or \(c_{0}\). Funct. Anal. Appl. 8, 138–141 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seán Dineen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dineen, S., Mujica, J. The approximation property for spaces of holomorphic functions on infinite dimensional spaces III. RACSAM 106, 457–469 (2012). https://doi.org/10.1007/s13398-012-0065-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-012-0065-7

Keywords

Mathematics Subject Classification

Navigation