Skip to main content
Log in

Abstract

We present criteria for determining mean ergodicity of C 0-semigroups of linear operators in a sequentially complete, locally convex Hausdorff space X. A characterization of reflexivity of certain spaces X with a basis via mean ergodicity of equicontinuous C 0-semigroups acting in X is also presented. Special results become available in Grothendieck spaces with the Dunford–Pettis property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albanese A.A., Bonet J., Ricker W.J.: Mean ergodic operators in Fréchet spaces. Ann. Acad. Sci. Fenn. Math. 34, 401–436 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Albanese A.A., Bonet J., Ricker W.J.: Grothendieck spaces with the Dunford–Pettis property. Positivity 14, 145–164 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Albanese, A.A., Bonet, J., Ricker, W.J.: On mean ergodic operators. In: Curbera, G.P. et al. (eds.) Vector Measures, Integration and Related Topics. Operator Theory: Advances and Applications, vol. 201, pp. 1–20. Birkhäuser, Basel (2010)

  4. Albanese A.A., Bonet J., Ricker W.J.: C 0-semigroups and mean ergodic operators in a class of Fréchet spaces. J. Math. Anal. Appl. 365, 142–157 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonet J., Ricker W.J.: Schauder decompositions and the Grothendieck and the Dunford–Pettis properties in Köthe echelon spaces of infinite order. Positivity 11, 77–93 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bonet J., Ricker W.J.: Mean ergodicity of multiplication operators in weighted spaces of holomorphic functions. Arch. Math. 92, 428–437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonet J., de Pagter B., Ricker W.J.: Mean ergodic operators and reflexive Fréchet lattices. Proc. R. Soc. Edinb. Sect. A 141, 897–920 (2011)

    Article  MATH  Google Scholar 

  8. Dunford N., Schwartz J.T.: Linear Operators I: General Theory, 2nd edn. Wiley, New York (1964)

    Google Scholar 

  9. Eberlein W.F.: Abstract ergodic theorems and weak almost periodic functions. Trans. Am. Math. Soc. 67, 217–240 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  10. Edwards R.E.: Functional Analysis. Reinhart and Winston, New York (1965)

    MATH  Google Scholar 

  11. Engel K.-J., Nagel R.: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (1999)

    Google Scholar 

  12. Floret, K.: Weakly compact sets. In: LNM, vol. 801. Springer, Berlin (1980)

  13. Fonf V.P., Lin M., Wojtaszczyk P.: Ergodic characterizations of reflexivity in Banach spaces. J. Funct. Anal. 187, 146–162 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hille, E., Phillips, R.S.: Functional Analysis and Semigroups, 4th edn. American Math. Soc., Providence (1981, revised)

  15. Jarchow H.: Locally Convex Spaces. B.G. Teubner, Stuttgart (1981)

    Book  MATH  Google Scholar 

  16. Kelley J.L.: General Topology, Rev. Edn, D. van Nostrand Co., Princeton–New York (1961)

  17. Komatsu H.: Semi-groups of operators in locally convex spaces. J. Math. Soc. Japan 16, 230–262 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  18. Komura T.: Semigroups of operators in locally convex spaces. J. Funct. Anal. 2, 258–296 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  19. Köthe, G.: Topological Vector Spaces I, 2nd edn. Springer, Berlin (1983, revised)

  20. Köthe G.: Topological Vector Spaces II. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  21. Krengel U.: Ergodic Theorems. Walter de Gruyter, Berlin (1985)

    Book  MATH  Google Scholar 

  22. Lotz, H.P. (1984) Tauberian theorems for operators on L and similar spaces. In: Bierstedt, K.D., Fuchssteiner, B. (eds.) Functional Analyis: Surveys and Recent Results III. North Holland, Amsterdam, pp. 117–133

  23. Lotz H.P.: Uniform convergence of operators on L and similar spaces. Math. Z. 190, 207–220 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  25. Miyadera I.: Semigroups of operators in Fréchet spaces and applications to partial differential operators. Tôhoku Math. J. 11, 162–183 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mugnolo D.: A semigroup analogue of the Fonf–Lin–Wojtaszczyk characterization of reflexive Banach spaces with a basis. Studia Math. 164, 243–251 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Piszczek K.: Quasi-reflexive Fréchet spaces and mean ergodicity. J. Math. Anal. Appl. 361, 224–233 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Piszczek K.: Barrelled spaces and mean ergodicity. RACSAM 104, 5–11 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rudin W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  30. Sato R.: On a mean ergodic theorem. Proc. Am. Math. Soc. 83, 563–564 (1981)

    Article  MATH  Google Scholar 

  31. Schaefer H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  32. Shaw S.-Y.: Ergodic projections of continuous and discrete semigroups. Proc. Am. Math. Soc. 78, 69–76 (1980)

    Article  MATH  Google Scholar 

  33. Yosida K.: Functional Analysis. Springer, Berlin (1980)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela A. Albanese.

Additional information

Research partially supported by MICINN and FEDER Project MTM2010-15200 and GV Project Prometeo/2008/101.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albanese, A.A., Bonet, J. & Ricker, W.J. Mean ergodic semigroups of operators. RACSAM 106, 299–319 (2012). https://doi.org/10.1007/s13398-011-0054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-011-0054-2

Keywords

Mathematics Subject Classification (2000)

Navigation